SHRINKING LATTICE POLYHEDRA

被引:2
|
作者
CREMONA, J [1 ]
LANDAU, S [1 ]
机构
[1] WESLEYAN UNIV,DEPT MATH,MIDDLETOWN,CT 06457
关键词
D O I
10.1137/0403029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:338 / 348
页数:11
相关论文
共 50 条
  • [41] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    [J]. ANNALS OF OPERATIONS RESEARCH, 2016, 240 (01) : 95 - 117
  • [42] Weight functions, double reciprocity laws, and volume formulas for lattice polyhedra
    Chen, BF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (16) : 9093 - 9098
  • [43] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    [J]. 4OR, 2012, 10 : 221 - 244
  • [44] Relaxations of mixed integer sets from lattice-free polyhedra
    Alberto Del Pia
    Robert Weismantel
    [J]. Annals of Operations Research, 2016, 240 : 95 - 117
  • [45] Dedekind–Carlitz polynomials as lattice-point enumerators in rational polyhedra
    Matthias Beck
    Christian Haase
    Asia R. Matthews
    [J]. Mathematische Annalen, 2008, 341 : 945 - 961
  • [46] Relaxations of mixed integer sets from lattice-free polyhedra
    Del Pia, Alberto
    Weismantel, Robert
    [J]. 4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH, 2012, 10 (03): : 221 - 244
  • [47] Generating function for the number of pyramid-like polyhedra on the cubic lattice
    Chen, M
    Lin, KY
    [J]. MODERN PHYSICS LETTERS B, 2003, 17 (25): : 1349 - 1351
  • [48] Notions of Maximality for Integral Lattice-Free Polyhedra: The Case of Dimension Three
    Averkov, Gennadiy
    Kruempelmann, Jan
    Weltge, Stefan
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2017, 42 (04) : 1035 - 1062
  • [49] LINEAR RECURRENCE RELATIONS IN Q-SYSTEMS VIA LATTICE POINTS IN POLYHEDRA
    Lee, Chul-Hee
    [J]. TRANSFORMATION GROUPS, 2019, 24 (02) : 429 - 466
  • [50] On Edge-Unfolding One-Layer Lattice Polyhedra with Cubic Holes
    Liou, Meng-Huan
    Poon, Sheung-Hung
    Wei, Yu-Jie
    [J]. COMPUTING AND COMBINATORICS, COCOON 2014, 2014, 8591 : 251 - 262