An interior-point method for P-*(k)-linear complementarity problem based on a trigonometric kernel function

被引:0
|
作者
Hafshejani, S. Fathi [1 ,2 ]
Fatemi, M. [1 ,2 ]
Peyghami, M. Reza [1 ,2 ]
机构
[1] KN Toosi Univ Technol, Dept Math, POB 16315-1618, Tehran, Iran
[2] KN Toosi Univ Technol, Sci Comp Optimizat & Syst Engn SCOPE, Tehran, Iran
关键词
Kernel function; P-*(k)-linear complementarity problem; Primal-dual interior point methods; Large-update methods;
D O I
10.1007/s12190-014-0794-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, El Ghami(Optim Theory DecisMak Oper Res Appl 31: 331-349, 2013) proposed a primal dual interior point method for P-*(k)-Linear Complementarity Problem (LCP) based on a trigonometric barrier term and obtained the worst case iteration complexity as O((1 + 2k)n(3/4) log n/is an element of for large-update methods. In this paper, we present a large update primal-dual interior point algorithm for P-*(k)-LCP based on a new trigonometric kernel function. By a simple analysis, we show that our algorithm based on the new kernel function enjoys the worst case O((1 + 2k)root nlog n log n/is an element of iteration bound for solving P-*(k)-LCP. This result improves the worst case iteration bound obtained by El Ghami for P-*(k)-LCP based on trigonometric kernel functions significantly.
引用
收藏
页码:111 / 128
页数:18
相关论文
共 50 条
  • [31] A New full-newton step infeasible interior-point method for P*(?)-linear Complementarity problem
    Lee, Jong-Kyu
    Cho, You-Young
    Jin, Jin-Hee
    Cho, Gyeong-Mi
    [J]. OPTIMIZATION LETTERS, 2024, 18 (04) : 943 - 964
  • [33] Kernel-Based Interior-Point Methods for Cartesian P*(κ)-Linear Complementarity Problems over Symmetric Cones
    Lesaja, G.
    [J]. CROATIAN OPERATIONAL RESEARCH REVIEW (CRORR), VOL 2, 2011, 2 : 23 - 32
  • [34] A predictor-corrector interior-point algorithm for P*(κ)-horizontal linear complementarity problem
    Kheirfam, Behrouz
    [J]. NUMERICAL ALGORITHMS, 2014, 66 (02) : 349 - 361
  • [35] INTERIOR-POINT METHODS FOR P*(κ)-HORIZONTAL LINEAR COMPLEMENTARITY PROBLEMS
    Cho, You-Young
    Chot, Gyeong-Mi
    [J]. JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (01) : 127 - 137
  • [36] An interior-point algorithm for -LCP based on a new trigonometric kernel function with a double barrier term
    Li, Xin
    Zhang, Mingwang
    Chen, Yan
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2017, 53 (1-2) : 487 - 506
  • [37] A full-Newton step interior-point algorithm for the special weighted linear complementarity problem based on positive-asymptotic kernel function
    Zhang, Mingwang
    Zhu, Dechun
    Zhong, Jiawei
    [J]. OPTIMIZATION AND ENGINEERING, 2023,
  • [38] An interior point approach for linear complementarity problem using new parametrized kernel function
    Benhadid, Ayache
    Saoudi, Khaled
    Merahi, Fateh
    [J]. OPTIMIZATION, 2022, 71 (15) : 4403 - 4422
  • [39] A new interior-point algorithm for monotone horizontal linear complementarity problem
    Wang, Guoqiang
    Cai, Xinzhong
    Yue, Yujing
    [J]. PROCEEDING OF THE SEVENTH INTERNATIONAL CONFERENCE ON INFORMATION AND MANAGEMENT SCIENCES, 2008, 7 : 216 - 221
  • [40] Interior-point methods for Cartesian P*(κ)-linear complementarity problems over symmetric cones based on the eligible kernel functions
    Lesaja, G.
    Wang, G. Q.
    Zhu, D. T.
    [J]. OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (4-5): : 827 - 843