MULTIPARAMETER MODEL OF A DISSIPATIVE NONLINEAR OSCILLATOR IN THE FORM OF ONE-DIMENSIONAL MAP

被引:10
|
作者
BEZRUCHKO, BP
PROKHOROV, MD
SELEZNEV, EP
机构
[1] Saratov Branch, the Institute of Radioengineering and Electronics, Russian Academy of Sciences, Saratov, 410019, 38, Zelyonaya str
关键词
D O I
10.1016/0960-0779(95)00007-Q
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A method is described for constructing directly from a time series a one-dimensional map which simulates the dynamics of dissipative nonlinear oscillator under pulse excitation. On the base of physical experiment, a procedure of determining the model parameters is proposed. The influence of selecting a dynamical variable on the model's dimension is demonstrated.
引用
收藏
页码:2095 / 2107
页数:13
相关论文
共 50 条
  • [31] Contraction of the finite one-dimensional oscillator
    Atakishiyev, NM
    Pogosyan, GS
    Wolf, KB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (02): : 317 - 327
  • [32] On the Eigensolutions of the One-Dimensional Kemmer Oscillator
    Boumali, A.
    TURKISH JOURNAL OF PHYSICS, 2007, 31 (06): : 307 - 315
  • [33] Chaotic one-dimensional harmonic oscillator
    Korea Advanced Inst of Science and, Technology, Taejon, Korea, Republic of
    Phys Rev E., 5 -A pt A (5245-5250):
  • [34] Chaotic one-dimensional harmonic oscillator
    Lee, SW
    Lee, HW
    PHYSICAL REVIEW E, 1997, 56 (05): : 5245 - 5250
  • [35] Ionization and stabilization of a one-dimensional model atom: Map approach
    Cheng, TW
    Liu, J
    Chen, SG
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1999, 13 (12): : 1489 - 1502
  • [36] CONVERSION OF A CHAOTIC ATTRACTOR INTO A STRANGE NONCHAOTIC ATTRACTOR IN AN ONE-DIMENSIONAL MAP AND BVP OSCILLATOR
    RAJASEKAR, S
    PRAMANA-JOURNAL OF PHYSICS, 1995, 44 (02): : 121 - 131
  • [37] NONLINEAR ADDRESS MAPS IN A ONE-DIMENSIONAL FRACTAL MODEL
    VINES, G
    HAYES, MH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1993, 41 (04) : 1721 - 1724
  • [38] Wave propagation in nonlinear one-dimensional soil model
    Ahn, J.
    Biscontin, G.
    Roesset, J. M.
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2009, 33 (04) : 487 - 509
  • [39] Nonlinear one-dimensional constitutive model for magnetostrictive materials
    Imhof A.N.
    Domann J.P.
    Multifunctional Materials, 2022, 5 (01):
  • [40] Exact form of the Bogoliubov excitations in one-dimensional nonlinear Schrodinger equation
    Kovrizhin, DL
    PHYSICS LETTERS A, 2001, 287 (5-6) : 392 - 396