AQUEOUS HIGH-TEMPERATURE AND HIGH-PRESSURE ORGANIC GEOCHEMISTRY OF HYDROTHERMAL VENT SYSTEMS

被引:56
|
作者
SIMONEIT, BRT
机构
[1] Petroleum Research Group, College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis
关键词
D O I
10.1016/0016-7037(93)90536-6
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Hydrothermal systems associated with oceanic spreading centers are now recognized as relatively common phenomena, and the organic chemical alterations occurring there are rapid and efficient. In the marine hydrothermal systems at water depths > 1.5 km, the conditions driving chemical reactions are high temperatures (up to > 400-degrees-C), confining pressures (> 150 bar), and other parameters such as pH, Eh, and mineralogy in an aqueous open flow medium. Continental hydrothermal systems may also be of interest, as, for example, in failed or dormant rifts and regions around piercement volcanoes. Organic matter alteration by reductive reactions to petroleum hydrocarbons occurs in hydrothermal systems over a wide temperature window (approximately 60 to > 400-degrees-C), under elevated pressure, and in a brief geological time (years to hundreds of years). The products are rapidly moved as bulk phase or in fluids from the regions at higher temperatures to areas at lower temperatures, where the high molecular weight material separates from the bulk. These conditions are conducive to organic chemistry which yields concurrent products by primarily reduction (due to mineral buffering), oxidation (high thermal stress), and synthesis reactions. This chemistry is just beginning to be elucidated by the geochemical community, but there are various industrial applications which provide useful preliminary insight. Therefore, the behavior of organic matter (inclusive of methane to high molecular weight compounds > C40) in warm to supercritical water needs to be characterized to understand the implications of this novel phenomenon in geological and geochemical processes, and the chemistry occurring over the full temperature spectrum of hydrothermal systems is of relevance to origins of life research.
引用
收藏
页码:3231 / 3243
页数:13
相关论文
共 50 条
  • [31] HIGH-PRESSURE HIGH-TEMPERATURE STUDIES IN GEOPHYSICS
    BASSETT, WA
    SCRIPTA METALLURGICA, 1988, 22 (02): : 157 - 161
  • [32] High-pressure high-temperature crystallography of silicon
    Courac , A.
    Pandolfi, S.
    Crichton, W.
    Le Godec, Y.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2022, 78 : E645 - E645
  • [33] NMR PROBE FOR HIGH-PRESSURE AND HIGH-TEMPERATURE
    DELANGEN, M
    PRINS, KO
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (11): : 5218 - 5221
  • [34] High-pressure and high-temperature polymorphism in silica
    Dubrovinsky, LS
    Dubrovinskaia, NA
    Prakapenka, V
    Seifert, F
    Langenhorst, F
    Dmitriev, V
    Weber, HP
    Le Bihan, T
    HIGH PRESSURE RESEARCH, 2003, 23 (1-2) : 35 - 39
  • [35] An application of a high-temperature and high-pressure reactor
    Rybár, P
    Lazar, T
    Hamrák, H
    Demcák, M
    Domaradsky, D
    METALURGIJA, 2002, 41 (03): : 139 - 142
  • [36] EXPERIMENTAL HIGH-TEMPERATURE AND HIGH-PRESSURE FAULTS
    SHELTON, GL
    TULLIS, J
    TULLIS, T
    GEOPHYSICAL RESEARCH LETTERS, 1981, 8 (01) : 55 - 58
  • [37] HIGH-TEMPERATURE HIGH-PRESSURE THERMOPOWER CELL
    RESHAMWALA, AS
    RAMESH, TG
    JOURNAL OF PHYSICS E-SCIENTIFIC INSTRUMENTS, 1975, 8 (06): : 465 - 466
  • [38] HIGH-PRESSURE AND HIGH-TEMPERATURE FLUID FUGACITIES
    SAXENA, SK
    FEI, Y
    GEOCHIMICA ET COSMOCHIMICA ACTA, 1987, 51 (04) : 783 - 791
  • [39] BENZIDINE REARRANGEMENT AT HIGH-PRESSURE AND HIGH-TEMPERATURE
    OSUGI, J
    NAKAHARA, M
    HORIGUCHI, M
    REVIEW OF PHYSICAL CHEMISTRY OF JAPAN, 1975, 45 (01): : 27 - 34
  • [40] HIGH-TEMPERATURE, HIGH-PRESSURE ELECTROSTATIC PRECIPITATION
    BUSH, JR
    FELDMAN, PL
    ROBINSON, M
    JOURNAL OF THE AIR POLLUTION CONTROL ASSOCIATION, 1979, 29 (04): : 365 - 371