On Tensor Product of Graphs, Girth and Triangles

被引:0
|
作者
Patil, H. P. [1 ]
Raja, V. [1 ]
机构
[1] Pondicherry Univ, Dept Math, Pondicherry, India
关键词
Tensor product; Bipartite graph; Connected graph; Eulerian graph; Girth; Cycle; Path;
D O I
10.7508/ijmsi.2015.01.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to obtain a necessary and sufficient condition for the tensor product of two or more graphs to be connected, bipartite or eulerian. Also, we present a characterization of the duplicate graph G circle plus K-2 to be unicyclic. Finally, the girth and the formula for computing the number of triangles in the tensor product of graphs are worked out.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [21] Gregarious star factorization of the tensor product of graphs
    Hemalatha, P.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2018, 10 (04)
  • [22] On optimal orientations of tensor product of complete graphs
    Lakshmi, R.
    Paulraja, P.
    ARS COMBINATORIA, 2007, 82 : 337 - 352
  • [23] EQUITABLE EDGE COLORING ON TENSOR PRODUCT OF GRAPHS
    Vivik, J. Veninstine
    Ali, M. M. Akbar
    Girija, G.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (02): : 1336 - 1344
  • [24] su(N) tensor product multiplicities and virtual Berenstein-Zelevinsky triangles
    Rasmussen, J
    Walton, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (49): : 11095 - 11105
  • [25] Girth and ?-choosability of graphs
    Gu, Yangyan
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2023, 103 (03) : 493 - 501
  • [26] Girth of pancake graphs
    Compeau, Phillip E. C.
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1641 - 1645
  • [27] GREGARIOUS KITE FACTORIZATION OF TENSOR PRODUCT OF COMPLETE GRAPHS
    Elakkiya, A. Tamil
    Muthusamy, A.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 7 - 24
  • [28] ANNIHILATOR DOMINATION NUMBER OF TENSOR PRODUCT OF PATH GRAPHS
    Sharma, K.
    Sharma, U.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (04): : 800 - 809
  • [29] On Hamilton cycle decompositions of the tensor product of complete graphs
    Balakrishnan, R
    Bermond, JC
    Paulraja, P
    Yu, ML
    DISCRETE MATHEMATICS, 2003, 268 (1-3) : 49 - 58
  • [30] Nowhere-zero flows in tensor product of graphs
    Zhang, Zhao
    Zheng, Yirong
    Mamut, Aygul
    JOURNAL OF GRAPH THEORY, 2007, 54 (04) : 284 - 292