FINITE EIGENFUNCTIONS IN THE WKB APPROXIMATION

被引:8
|
作者
SUKHATME, U
PAGNAMENTA, A
机构
关键词
D O I
10.1119/1.16678
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A long-standing problem and major shortcoming of semiclassical (WKB) bound-state wave functions is their divergence at the classical turning points. Presently available regularization schemes are accurate but rather complicated. It is shown how finite wave functions can be simply obtained by reorganizing the WKB perturbation expansion in powers of h and retaining appropriate higher-order terms. The wave functions obtained by this method are compared with exactly known ones for the harmonic-oscillator and Morse potentials.
引用
收藏
页码:944 / 947
页数:4
相关论文
共 50 条
  • [1] Burgers equation and the WKB-Langer asymptotic L2 approximation of eigenfunctions and their derivatives
    Truman, A
    Zhao, HZ
    [J]. PROBABILISTIC METHODS IN FLUIDS, PROCEEDINGS, 2003, : 332 - 366
  • [2] Modified WKB approximation
    Bronzan, J.B.
    [J]. Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (01):
  • [3] Quasilinear Approximation and WKB
    R. Krivec
    V. B. Mandelzweig
    F. Tabakin
    [J]. Few-Body Systems, 2004, 34 : 57 - 62
  • [4] ON THE THEORY OF WKB APPROXIMATION
    LYUBARSKY, GY
    [J]. DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1980, (09): : 70 - 73
  • [5] Fractional WKB approximation
    Eqab M. Rabei
    Ibrahim M. A. Altarazi
    Sami I. Muslih
    Dumitru Baleanu
    [J]. Nonlinear Dynamics, 2009, 57 : 171 - 175
  • [6] Fractional WKB approximation
    Rabei, Eqab M.
    Altarazi, Ibrahim M. A.
    Muslih, Sami I.
    Baleanu, Dumitru
    [J]. NONLINEAR DYNAMICS, 2009, 57 (1-2) : 171 - 175
  • [7] ON THE VALIDITY OF THE WKB APPROXIMATION
    BURDICK, M
    SCHMIDT, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (02): : 579 - 592
  • [8] DECHANNELING IN THE WKB APPROXIMATION
    VISINESCU, A
    CORCIOVEI, A
    [J]. REVUE ROUMAINE DE PHYSIQUE, 1979, 24 (09): : 921 - 929
  • [9] Quasilinear approximation and WKB
    Krivec, R
    Mandelzweig, VB
    Tabakin, F
    [J]. FEW-BODY SYSTEMS, 2004, 34 (1-3) : 57 - 62
  • [10] WKB APPROXIMATION AND SCALING
    BANERJEE, K
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 363 (1712): : 147 - 151