EXISTENCE OF STANDING PERIODIC WAVES IN A PERFECT FLUID

被引:1
|
作者
GREENBER.JM
机构
关键词
D O I
10.1016/0022-247X(72)90238-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:227 / &
相关论文
共 50 条
  • [41] EXISTENCE AND STABILITY OF STANDING WAVES FOR THE CHOQUARD EQUATION WITH PARTIAL CONFINEMENT
    Xiao, Lu
    Geng, Qiuping
    Wang, Jun
    Zhu, Maochun
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2020, 55 (02) : 451 - 474
  • [42] Existence of stable standing waves for the Schrödinger–Choquard equation
    Kun Liu
    Cunqin Shi
    Boundary Value Problems, 2018
  • [43] Existence and stability of standing waves for nonlinear fractional Schroumldinger equations
    Guo, Boling
    Huang, Daiwen
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
  • [44] Existence of standing waves for the complex Ginzburg-Landau equation
    Cipolatti, Rolci
    Dickstein, Flavio
    Puel, Jean-Pierre
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (01) : 579 - 593
  • [45] Existence and orbital stability of standing waves for nonlinear Schrodinger systems
    Gou, Tianxiang
    Jeanjean, Louis
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 144 : 10 - 22
  • [46] EXISTENCE OF STANDING WAVES FOR SCHRODINGER EQUATION INVOLVING THE FRACTION LAPLACIAN
    De Medeiros, Everaldo S.
    Cardoso, Jose Anderson
    De Souza, Manasses
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [47] Existence and stability of standing waves for coupled derivative Schrodinger equations
    Guo, Boling
    Huang, Daiwen
    Wang, Zhiqiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2015, 56 (10)
  • [48] Existence of unstable standing waves for the inhomogeneous nonlinear Schrodinger equation
    Liu, Yue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2008, 7 (01) : 193 - 209
  • [49] Existence of stable standing waves for the Schrodinger-Choquard equation
    Liu, Kun
    Shi, Cunqin
    BOUNDARY VALUE PROBLEMS, 2018,
  • [50] AN EXISTENCE AND STABILITY RESULT FOR STANDING WAVES OF NONLINEAR SCHRODINGER EQUATIONS
    Jeanjean, Louis
    Le Coz, Stefan
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2006, 11 (07) : 813 - 840