Finite mixture models and model-based clusteringFinite mixture models and model-based clustering

被引:206
|
作者
Melnykov, Volodymyr [1 ]
Maitra, Ranjan [2 ]
机构
[1] North Dakota State Univ, Dept Stat, Fargo, ND 58105 USA
[2] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
基金
美国国家科学基金会;
关键词
EM algorithm; model selection; variable selection; diagnostics; two-dimensional gel electrophoresis data; proteomics; text mining; magnitude magnetic resonance image;
D O I
10.1214/09-SS053
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite mixture models have a long history in statistics, having been used to model population heterogeneity, generalize distributional assumptions, and lately, for providing a convenient yet formal framework for clustering and classification. This paper provides a detailed review into mixture models and model-based clustering. Recent trends as well as open problems in the area are also discussed.
引用
收藏
页码:80 / 116
页数:37
相关论文
共 50 条
  • [21] A mixture model-based approach to the clustering of microarray expression data
    McLachlan, GJ
    Bean, RW
    Peel, D
    BIOINFORMATICS, 2002, 18 (03) : 413 - 422
  • [22] Robust mixture model-based clustering with genetic algorithm approach
    Nguyen Duc Thang
    Chen, Lihui
    Chan, Chee Keong
    INTELLIGENT DATA ANALYSIS, 2011, 15 (03) : 357 - 373
  • [23] Model-based clustering of binary longitudinal atopic dermatitis disease histories by latent class mixture models
    Kuss, O
    Gromann, C
    Diepgen, TL
    BIOMETRICAL JOURNAL, 2006, 48 (01) : 105 - 116
  • [24] Model-Based segmentation of image data using spatially constrained mixture models
    Hu, Can
    Fan, Wentao
    Du, Jixiang
    Zeng, Yuchen
    NEUROCOMPUTING, 2018, 283 : 214 - 227
  • [25] A Finite Gamma Mixture Model-Based Discriminative Learning Frameworks
    Al-Osaimi, Faisal R.
    Bouguila, Nizar
    2015 IEEE 14TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2015, : 819 - 824
  • [26] Finite Mixture Model-based classification of a complex vegetation system
    Attorre, Fabio
    Cambria, Vito E.
    Agrillo, Emiliano
    Alessi, Nicola
    Alfo, Marco
    De Sanctis, Michele
    Malatesta, Luca
    Sitzia, Tommaso
    Guarino, Riccardo
    Marceno, Corrado
    Massimi, Marco
    Spada, Francesco
    Fanelli, Giuliano
    VEGETATION CLASSIFICATION AND SURVEY, 2020, 1 : 77 - 86
  • [27] Choosing models in model-based clustering and discriminant analysis
    Biernacki, C
    Govaert, G
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (01) : 49 - 71
  • [28] Mixture of latent trait analyzers for model-based clustering of categorical data
    Gollini, Isabella
    Murphy, Thomas Brendan
    STATISTICS AND COMPUTING, 2014, 24 (04) : 569 - 588
  • [29] Gaussian mixture modeling and model-based clustering under measurement inconsistency
    Sarkar, Shuchismita
    Melnykov, Volodymyr
    Zheng, Rong
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2020, 14 (02) : 379 - 413
  • [30] Gaussian mixture modeling and model-based clustering under measurement inconsistency
    Shuchismita Sarkar
    Volodymyr Melnykov
    Rong Zheng
    Advances in Data Analysis and Classification, 2020, 14 : 379 - 413