q-Bernstein-Schurer-Kantorovich type operators

被引:0
|
作者
Agrawal, P. N. [1 ]
Goyal, Meenu [1 ]
Kajla, Arun [1 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
来源
关键词
q-Bernstein-Schurer-Kantorovich; Rate of convergence; Modulus of continuity; A-statistical convergence;
D O I
10.1007/s40574-015-0034-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present a Stancu type Kantorovich modification of q-Bernstein-Schurer operators introduced by Muraru (Mathematica LVI 2: 1-11, 2011) and modified by Ren and Zeng (Bull Korean Math Soc 50(4): 1145-1156, 2013). Here, we obtain a convergence theorem by using the well known Bohman-Korovkin criterion and find the estimate of the rate of convergence bymeans of modulus of continuity and Lipschitz function for these operators. Also, we establish a Korovkin type A-statistical approximation theorem.
引用
收藏
页码:169 / 180
页数:12
相关论文
共 50 条
  • [41] Chlodowsky-type q-Bernstein-Stancu-Kantorovich operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2015
  • [42] On Kantorovich Modification of (p, q)-Bernstein Operators
    Acar, Tuncer
    Aral, Ali
    Mohiuddine, S. A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A3): : 1459 - 1464
  • [43] On Kantorovich Modification of (p, q)-Bernstein Operators
    Tuncer Acar
    Ali Aral
    S. A. Mohiuddine
    Iranian Journal of Science and Technology, Transactions A: Science, 2018, 42 : 1459 - 1464
  • [44] (p,q)-Bernstein-Schurer-Kantorovich算子的逼近性质
    胡晓敏
    查星星
    王徐炜
    杭州电子科技大学学报(自然科学版), 2018, 38 (03) : 88 - 92
  • [45] Security of image transfer and innovative results for (p,q)-Bernstein-Schurer p,q )-Bernstein-Schurer operators
    Bilgin, Nazmiye Gonul
    Kaya, Yusuf
    Eren, Melis
    AIMS MATHEMATICS, 2024, 9 (09): : 23812 - 23836
  • [46] q-Bernstein-Schurer-Durrmeyer type operators for functions of one and two variables
    Kajla, Arun
    Ispir, Nurhayat
    Agrawal, P. N.
    Goyal, Meenu
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 275 : 372 - 385
  • [47] Bivariate Bernstein-Schurer-Stancu type GBS operators in (p,q)-analogue
    Mursaleen, M.
    Ahasan, Mohd.
    Ansari, K. J.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01):
  • [48] On q-analogue of Bernstein-Schurer-Stancu operators
    Agrawal, P. N.
    Gupta, Vijay
    Kumar, A. Sathish
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (14) : 7754 - 7764
  • [49] Stancu-Schurer-Kantorovich operators based on q-integers
    Acu, Ana Maria
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 896 - 907
  • [50] Chlodowsky variant of q-Bernstein-Schurer-Stancu operators
    Tuba Vedi
    Mehmet Ali Özarslan
    Journal of Inequalities and Applications, 2014