Bacteria-based repair and self-healing of concrete

被引:66
|
作者
De Belie, N. [1 ]
Wang, J. [1 ,2 ]
机构
[1] Univ Ghent, Magnel Lab Concrete Res, Technol Pk Zwijnaarde 904, B-9052 Ghent, Belgium
[2] Univ Ghent, Lab Microbial Ecol & Technol LabMET, Coupure Links 653, B-9000 Ghent, Belgium
关键词
bacteria; microbially induced CaCO3 precipitation (MICP); bioconsolidation; crack repair; self-healing;
D O I
10.1080/21650373.2015.1077754
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Durability problems in concrete can often be linked to a high permeability, which is either caused by a high matrix permeability or the presence of cracks. Therefore, treatments that reduce the permeability of the matrix, or that close the crack from ingress of aggressive agents carried by water or air, would substantially enhance the service life of a concrete structure. Several chemical products are currently in use for consolidation and crack repair, but a new technique that has been the focus of much research efforts over the last decade is the bacteria-based calcium carbonate precipitation. This technique is now slowly making its way towards practical applications. The principles of the technique, the important influential parameters and the recent advances related to its use for consolidation, surface protection, external crack repair, and self-healing of cracks in concrete are discussed in this article. Also the wider applicability for mechanical strengthening and consolidation of natural stone and soils is shortly treated.
引用
收藏
页码:35 / 56
页数:22
相关论文
共 50 条
  • [41] A new bacteria-based self-healing system triggered by sulfate ion for cementitious material
    Su, Yilin
    Qu, Fulin
    Zhang, Junyi
    Zhang, Xuan
    JOURNAL OF BUILDING ENGINEERING, 2024, 86
  • [42] Advancements in bacteria based self-healing concrete and the promise of modelling
    Bagga, Manpreet
    Hamley-Bennett, Charlotte
    Alex, Aleena
    Freeman, Brubeck L.
    Justo-Reinoso, Ismael
    Mihai, Iulia C.
    Gebhard, Susanne
    Paine, Kevin
    Jefferson, Anthony
    Masoero, Enrico
    Ofiteru, Irina D.
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 358
  • [43] Influences of bacteria-based self-healing agents on cementitious materials hydration kinetics and compressive strength
    Luo, Mian
    Qian, Chunxiang
    CONSTRUCTION AND BUILDING MATERIALS, 2016, 121 : 659 - 663
  • [44] The effects of biomineralization on the localised phase and microstructure evolutions of bacteria-based self-healing cementitious composites
    Tan, Linzhen
    Ke, Xinyuan
    Li, Qiu
    Gebhard, Susanne
    Ferrandiz-Mas, Veronica
    Paine, Kevin
    Chen, Wei
    CEMENT & CONCRETE COMPOSITES, 2022, 128
  • [45] Aerobic non-ureolytic bacteria-based self-healing cementitious composites: A comprehensive review
    Justo-Reinoso, Ismael
    Heath, Andrew
    Gebhard, Susanne
    Paine, Kevin
    JOURNAL OF BUILDING ENGINEERING, 2021, 42 (42):
  • [46] Bacteria-based self-healing of cement mortars loaded at different levels and exposed to high temperature
    Yildirim, Musa
    Ozhan, Hacer Bilir
    Oz, Hilal Girgin
    MAGAZINE OF CONCRETE RESEARCH, 2022, 75 (13) : 674 - 684
  • [47] Silica-based self-healing microcapsules for self-repair in concrete
    Tan N.P.B.
    Keung L.H.
    Choi W.H.
    Lam W.C.
    Leung H.N.
    Tan, Noel Peter Bengzon (bengzontan@nami.org.hk), 2016, John Wiley and Sons Inc (133)
  • [48] The effect of oxygen and water on the provision of crack closure in bacteria-based self-healing cementitious composites
    Tan, Linzhen
    Reeksting, Bianca
    Justo-Reinoso, Ismael
    Ferrandiz-Mas, Veronica
    Heath, Andrew
    Gebhard, Susanne
    Paine, Kevin
    CEMENT & CONCRETE COMPOSITES, 2023, 142
  • [49] Silica-based self-healing microcapsules for self-repair in concrete
    Tan, Noel Peter Bengzon
    Keung, Lok Hang
    Choi, Wing Ho
    Lam, Wai Chak
    Leung, Hei Nga
    JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (12)
  • [50] Towards cost efficient bacteria based self-healing marine concrete
    Palin, D.
    Wiktor, V.
    Jonkers, H. M.
    CONCRETE SOLUTIONS: PROCEEDINGS OF CONCRETE SOLUTIONS, 5TH INTERNATIONAL CONFERENCE ON CONCRETE REPAIR, 2014, : 105 - 108