QUANTUM-MECHANICS ON TOPOLOGICALLY NONTRIVIAL SPACES

被引:0
|
作者
SLADKOWSKI, J
机构
[1] Department of Theoretical Physics, Silesian University, Katowice, 40-007
关键词
D O I
10.1007/BF00670757
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The formulation of quantum mechanics on topologically nontrivial spaces is discussed. It is pointed out that the "obstacles" are represented by cohomology groups and not only by pi-1 (M) as usually stated. Some widespread errors and misunderstandings are cleared up.
引用
收藏
页码:53 / 57
页数:5
相关论文
共 50 条
  • [31] RELATIVITY AND QUANTUM-MECHANICS
    YILMAZ, H
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (10-1) : 871 - 902
  • [32] INTERPRETATION OF QUANTUM-MECHANICS
    OMNES, R
    PHYSICS LETTERS A, 1987, 125 (04) : 169 - 172
  • [33] ON THE QUANTUM-MECHANICS OF SUPERMEMBRANES
    DEWIT, B
    HOPPE, J
    NICOLAI, H
    NUCLEAR PHYSICS B, 1988, 305 (04) : 545 - 581
  • [34] INVERSION OF QUANTUM-MECHANICS
    LUBKIN, E
    LUBKIN, T
    COMPUTER PHYSICS COMMUNICATIONS, 1979, 16 (02) : 207 - 219
  • [35] THE QUANTUM-MECHANICS OF MATERIALS
    COHEN, ML
    HEINE, V
    PHILLIPS, IC
    USPEKHI FIZICHESKIKH NAUK, 1984, 142 (02): : 309 - 329
  • [36] CONSTRAINTS IN QUANTUM-MECHANICS
    DACOSTA, RCT
    PHYSICAL REVIEW A, 1982, 25 (06): : 2893 - 2900
  • [37] A DEFORMATION OF QUANTUM-MECHANICS
    LI, YQ
    SHENG, ZM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (24): : 6779 - 6788
  • [38] SUPERSYMMETRY IN QUANTUM-MECHANICS
    GENDENSHTEIN, LE
    KRIVE, IV
    USPEKHI FIZICHESKIKH NAUK, 1985, 146 (04): : 553 - 590
  • [39] QUANTUM-MECHANICS AND DETERMINISM
    SHANKS, N
    PHILOSOPHICAL QUARTERLY, 1993, 43 (170): : 20 - 37
  • [40] POSTMODERN QUANTUM-MECHANICS
    HELLER, EJ
    TOMSOVIC, S
    PHYSICS TODAY, 1993, 46 (07) : 38 - 46