LONGEST INCREASING AND DECREASING SUBSEQUENCES

被引:465
|
作者
SCHENSTED, C
机构
来源
CANADIAN JOURNAL OF MATHEMATICS | 1961年 / 13卷 / 02期
关键词
D O I
10.4153/CJM-1961-015-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:179 / &
相关论文
共 50 条
  • [31] Unique longest increasing subsequences in 132-avoiding permutations
    Van Nimwegen, Nicholas
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2024, 89 : 397 - 399
  • [32] Asymptotic expansions relating to the distribution of the length of longest increasing subsequences
    Bornemann, Folkmar
    FORUM OF MATHEMATICS SIGMA, 2024, 12
  • [33] Longest increasing subsequences in windows based on canonical antichain partition
    Chen, Erdong
    Yang, Linji
    Yuan, Hao
    THEORETICAL COMPUTER SCIENCE, 2007, 378 (03) : 223 - 236
  • [34] Longest increasing subsequences in involutions avoiding patterns of length three
    Mansour, Toufik
    Yildirim, Gokhan
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2183 - 2192
  • [35] Asymptotic behavior of the length of the longest increasing subsequences of random walks
    Mendonca, J. Ricardo G.
    Schawe, Hendrik
    Hartmann, Alexander K.
    PHYSICAL REVIEW E, 2020, 101 (03)
  • [36] On Longest Increasing Subsequences in Words in Which All Multiplicities are Equal
    Balogh, Ferenc
    JOURNAL OF INTEGER SEQUENCES, 2023, 26 (07)
  • [37] Longest increasing subsequences in windows based on canonical antichain partition
    Chen, ED
    Yuan, H
    Yang, LJ
    ALGORITHMS AND COMPUTATION, 2005, 3827 : 1153 - 1162
  • [38] Empirical scaling of the length of the longest increasing subsequences of random walks
    Mendonca, J. Ricardo G.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (08)
  • [39] Computing Longest Increasing Subsequences over Sequential Data Streams
    Li, Youhuan
    Zou, Lei
    Zhang, Huaming
    Zhao, Dongyan
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2016, 10 (03): : 181 - 192
  • [40] Computing Longest Lyndon Subsequences and Longest Common Lyndon Subsequences
    Hideo Bannai
    Tomohiro I.
    Tomasz Kociumaka
    Dominik Köppl
    Simon J. Puglisi
    Algorithmica, 2024, 86 : 735 - 756