FITTING NONCAUSAL AUTOREGRESSIVE SIGNAL PLUS NOISE MODELS TO NOISY NON-GAUSSIAN LINEAR-PROCESSES

被引:15
|
作者
TUGNAIT, JK
机构
关键词
D O I
10.1109/TAC.1987.1104657
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:547 / 552
页数:6
相关论文
共 50 条
  • [41] A neural solution for signal detection in non-Gaussian noise
    Khairnar, D. G.
    Merchant, S. N.
    Desai, U. B.
    [J]. INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, PROCEEDINGS, 2007, : 185 - +
  • [42] A Nonparametric Approach to Signal Detection in Non-Gaussian Noise
    Chen, Changrun
    Xu, Weichao
    Pan, Yijin
    Zhu, Huiling
    Wang, Jiangzhou
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2022, 29 : 503 - 507
  • [43] IS NON-GAUSSIAN NOISE PREFERRED OVER GAUSSIAN-NOISE IN SIGNAL-DETECTION
    CHURCH, CK
    [J]. JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1982, 71 (02): : 505 - 507
  • [44] An Experiment on Autoregressive and Threshold Autoregressive Models with Non-Gaussian Error with Application to Realized Volatility
    Zhang, Ziyi
    Li, Wai Keung
    [J]. ECONOMIES, 2019, 7 (02):
  • [45] Fitting MA models to linear non-Gaussian random fields using higher order cumulants
    Tugnait, JK
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (04) : 1045 - 1050
  • [46] CHARRELATION-BASED ESTIMATION OF THE PARAMETERS OF NON-GAUSSIAN AUTOREGRESSIVE PROCESSES
    Slapak, Alon
    Yeredor, Arie
    [J]. 2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 448 - 451
  • [47] Non-Gaussian autoregressive processes with Tukey g-and-h transformations
    Yan, Yuan
    Genton, Marc G.
    [J]. ENVIRONMETRICS, 2019, 30 (02)
  • [48] Finite dimensional models for extremes of Gaussian and non-Gaussian processes
    Xu, Hui
    Grigoriu, Mircea D.
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2022, 68
  • [50] COMPARISON OF NON-GAUSSIAN MULTICOMPONENT AND PERIODIC AUTOREGRESSIVE MODELS FOR RIVER FLOW
    ESHETE, Z
    VANDEWIELE, GL
    [J]. STOCHASTIC HYDROLOGY AND HYDRAULICS, 1992, 6 (04): : 223 - 238