Elliptic-parabolic (hyperbolic) system;
chemotaxis model;
local existence;
global existence;
D O I:
10.4208/jpde.v31.n4.3
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we use contraction mapping principle and operator-theoretic approach to establish local solvability of the elliptic-parabolic(hyperbolic) Type Chemotaxis System. In addition, global solvability of the systems is considered by some uniform estimates.
机构:
GuangDong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R ChinaGuangDong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
Peng, Hongyun
Zhao, Kun
论文数: 0引用数: 0
h-index: 0
机构:
Tulane Univ, Dept Math, New Orleans, LA 70118 USAGuangDong Univ Technol, Sch Math & Stat, Guangzhou 510006, Peoples R China
机构:
V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev, UkraineV. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
Sergienko, I.V.
Deineka, V.S.
论文数: 0引用数: 0
h-index: 0
机构:
V. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev, UkraineV. M. Glushkov Institute of Cybernetics, National Academy of Sciences of Ukraine, Kiev, Ukraine
机构:
Faculty of Mechanics and Mathematics, I. Franko Lviv National University, Lviv 79000, 1, Universytets'ka Str.Faculty of Mechanics and Mathematics, I. Franko Lviv National University, Lviv 79000, 1, Universytets'ka Str.