DUALITY IN NONCONVEX MULTIOBJECTIVE PROGRAMMING

被引:0
|
作者
GULATI, TR [1 ]
TALAAT, N [1 ]
机构
[1] UNIV ROORKEE,DEPT MATH,ROORKEE 247667,UTTAR PRADESH,INDIA
关键词
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A multiobjective programming problem is considered. Strong and converse duality theorems are established using Kuhn-Tucker and Fritz John type necessary conditions respectively. An application to a multiobjective fractional programming is discussed. These results subsume the duality theorems of Bector et al. [5].
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [41] Generalized invexity and duality in multiobjective programming problems
    Aghezzaf, B
    Hachimi, M
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2000, 18 (01) : 91 - 101
  • [42] DUALITY WITHOUT CONSTRAINT QUALIFICATION FOR MULTIOBJECTIVE PROGRAMMING
    EGUDO, RR
    WEIR, T
    MOND, B
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1992, 33 : 531 - 544
  • [43] Duality for a class of nondifferentiable multiobjective programming problems
    Yang, XM
    Teo, KL
    Yang, XQ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 252 (02) : 999 - 1005
  • [44] Multiobjective duality for convex semidefinite programming problems
    Wanka, G
    Bot, RI
    Grad, SM
    [J]. ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2003, 22 (03): : 711 - 728
  • [45] On zero duality gap in nonconvex quadratic programming problems
    X. J. Zheng
    X. L. Sun
    D. Li
    Y. F. Xu
    [J]. Journal of Global Optimization, 2012, 52 : 229 - 242
  • [46] On zero duality gap in nonconvex quadratic programming problems
    Zheng, X. J.
    Sun, X. L.
    Li, D.
    Xu, Y. F.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2012, 52 (02) : 229 - 242
  • [47] AUGMENTED LAGRANGE MULTIPLIER FUNCTIONS AND DUALITY IN NONCONVEX PROGRAMMING
    ROCKAFELLAR, RT
    [J]. SIAM JOURNAL ON CONTROL, 1974, 12 (02): : 268 - 285
  • [48] ε-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints
    T. Q. Son
    D. S. Kim
    [J]. Journal of Global Optimization, 2013, 57 : 447 - 465
  • [49] ε-Mixed type duality for nonconvex multiobjective programs with an infinite number of constraints
    Son, T. Q.
    Kim, D. S.
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (02) : 447 - 465
  • [50] A geometric characterization of strong duality in nonconvex quadratic programming with linear and nonconvex quadratic constraints
    Flores-Bazan, Fabian
    Carcamo, Gabriel
    [J]. MATHEMATICAL PROGRAMMING, 2014, 145 (1-2) : 263 - 290