DYNAMIC IV CHARACTERISTICS OF AN ALGAAS/GAAS-BASED OPTOTHYRISTOR FOR PULSED POWER-SWITCHING APPLICATIONS

被引:3
|
作者
ZHAO, JH
BURKE, T
LARSON, D
WEINER, M
CHIN, A
BALLINGALL, JM
YU, TH
机构
[1] GE,ELECTR LAB,SYRACUSE,NY 13221
[2] USA,LABCOM,ETD LAB,FT MONMOUTH,NJ 07703
基金
美国国家科学基金会;
关键词
D O I
10.1109/55.144997
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A high-performance MBE-grown AlGaAs/GaAs-based heterostructure optothyristor has been fabricated and characterized for high-power pulsed switching applications. An LEC undoped semi-insulating GaAs of 650-mu-m in thickness was used as the voltage blocking layer and low-temperature GaAs grown at 200-degrees-C was used to passivate the surface and to reduce the surface leakage current. The dynamic current-voltage characteristics have been measured up to 115 A and 1974 V, which corresponds to a field intensity of more than 30 kV/cm. The dissipated energy per switching as a function of device voltage has also been determined to be in the range of 2 mJ or lower.
引用
收藏
页码:161 / 163
页数:3
相关论文
共 42 条
  • [31] Effect of the spatial current dynamics on radiative characteristics of high-power lasers-thyristors based on AlGaAs/GaAs heterostructures
    Slipchenko, S. O.
    Podoskin, A. A.
    Soboleva, O. S.
    Pikhtin, N. A.
    Bagaev, T. A.
    Ladugin, M. A.
    Marmalyuk, A. A.
    Simakov, V. A.
    Tarasov, I. S.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (05)
  • [32] Dynamic Wi-Fi Channel Switching Based On Frequency Characteristics For Wireless Power Transfer
    Imae, Akihiro
    Tamaki, Shinya
    Narikawa, Satoshi
    PROCEEDINGS OF 2024 IEEE WIRELESS POWER TECHNOLOGY CONFERENCE AND EXPO, WPTCE, 2024, : 227 - 230
  • [33] High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1550-nm applications
    Jeon, H
    Verdiell, JM
    Ziari, M
    Mathur, A
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 1997, 3 (06) : 1344 - 1350
  • [34] High-power low-divergence semiconductor lasers for GaAs-based 980-nm and InP-based 1550-nm applications
    Jeon, H.
    Verdiell, J.-M.
    Ziari, M.
    Mathur, A.
    IEEE Journal on Selected Topics in Quantum Electronics, 1997, 3 (06): : 1344 - 1350
  • [35] Active Clamping Circuit to Suppress Switching Stress on a MOS-Gate-Structure-Based Power Semiconductor for Pulsed-Power Applications
    Kim, Bongseong
    Ju, Heung-Jin
    Ko, Kwang-Cheol
    Hotta, Eiki
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2011, 39 (08) : 1736 - 1742
  • [36] An Energy Storage Equipment Sizing Process Based on Static and Dynamic Characteristics for Pulsed Power Load in Airborne Electrical Power System
    Gao, Pengfei
    Li, Yuren
    Huang, Ming
    Yao, Wenli
    Zheng, Xiancheng
    Zhang, Chenguang
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 2899 - 2911
  • [37] Characteristics of Doped n+ GaAs Thermopile-Based RF MEMS Power Sensors for MMIC Applications
    Zhang, Zhiqiang
    Liao, Xiaoping
    IEEE ELECTRON DEVICE LETTERS, 2017, 38 (10) : 1473 - 1476
  • [38] Switching Characteristics of Diamond-based m-i-p plus Diodes in Power Electronic Applications
    Nawawi, Arie
    Jet, Tseng King
    Rusli
    Amaratunga, Gehan A. J.
    2011 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2011, : 2676 - 2680
  • [39] Light Characteristics of Narrow-Stripe High-Power Semiconductor Lasers (1060 nm) Based on Asymmetric AlGaAs/GaAs Heterostructures with a Broad Waveguide
    Shashkin, I. S.
    Leshko, A. Y.
    Nikolaev, D. N.
    Shamakhov, V. V.
    Rudova, N. A.
    Bakhvalov, K. V.
    Lutetskiy, A. V.
    Kapitonov, V. A.
    Zolotarev, V. V.
    Slipchenko, S. O.
    Pikhtin, N. A.
    Kop'ev, P. S.
    SEMICONDUCTORS, 2020, 54 (04) : 484 - 488
  • [40] Light Characteristics of Narrow-Stripe High-Power Semiconductor Lasers (1060 nm) Based on Asymmetric AlGaAs/GaAs Heterostructures with a Broad Waveguide
    I. S. Shashkin
    A. Y. Leshko
    D. N. Nikolaev
    V. V. Shamakhov
    N. A. Rudova
    K. V. Bakhvalov
    A. V. Lutetskiy
    V. A. Kapitonov
    V. V. Zolotarev
    S. O. Slipchenko
    N. A. Pikhtin
    P. S. Kop’ev
    Semiconductors, 2020, 54 : 484 - 488