AN ARTIFICIAL REALIZATION OF A SIMPLE BIRTH-AND-DEATH PROCESS

被引:0
|
作者
KENDALL, DG
机构
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:116 / 119
页数:4
相关论文
共 50 条
  • [41] Total variation cutoff in birth-and-death chains
    Ding, Jian
    Lubetzky, Eyal
    Peres, Yuval
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 146 (1-2) : 61 - 85
  • [42] ASYMPTOTIC ABSORPTION DISTRIBUTIONS IN BIRTH-AND-DEATH PROCESSES
    EBERL, W
    ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) : 298 - 299
  • [43] Concerted and birth-and-death evolution of multigene families
    Nei, M
    Rooney, AP
    ANNUAL REVIEW OF GENETICS, 2005, 39 : 121 - 152
  • [44] ON THE RATE OF CONVERGENCE OF SPATIAL BIRTH-AND-DEATH PROCESSES
    MOLLER, J
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1989, 41 (03) : 565 - 581
  • [45] A Quasi Birth-and-Death model for tumor recurrence
    Santana, Leonardo M.
    Ganesan, Shridar
    Bhanot, Gyan
    JOURNAL OF THEORETICAL BIOLOGY, 2019, 480 : 175 - 191
  • [46] Chaotic behaviour of birth-and-death models with proliferation
    Aroza, Javier
    Peris, Alfred
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2012, 18 (04) : 647 - 655
  • [47] On linear birth-and-death processes in a random environment
    Nicolas Bacaër
    Abdelkarim Ed-Darraz
    Journal of Mathematical Biology, 2014, 69 : 73 - 90
  • [48] Total variation cutoff in birth-and-death chains
    Jian Ding
    Eyal Lubetzky
    Yuval Peres
    Probability Theory and Related Fields, 2010, 146
  • [49] Approximation of epidemics by inhomogeneous birth-and-death processes
    Clancy, D
    O'Neill, P
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1998, 73 (02) : 233 - 245
  • [50] Random walk in a birth-and-death dynamical environment
    Fontes, Luiz Renato
    Gomes, Pablo A.
    Pinheiro, Maicon A.
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28