RELATIONS IMPLYING THAT 2 MATRICES BE NORMAL

被引:0
|
作者
TAUSSKY, O
机构
来源
AMERICAN MATHEMATICAL MONTHLY | 1961年 / 68卷 / 06期
关键词
D O I
10.2307/2311168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:579 / &
相关论文
共 50 条
  • [41] Corners of normal matrices
    Bhatia, Rajendra
    Choi, Man-Duen
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2006, 116 (04): : 393 - 399
  • [42] NOTE ON NORMAL MATRICES
    THOMPSON, RC
    CANADIAN JOURNAL OF MATHEMATICS, 1963, 15 (02): : 220 - +
  • [43] Corners of normal matrices
    Rajendra Bhatia
    Man-Duen Choi
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2006, 116 : 393 - 399
  • [44] ALGEBRAS OF NORMAL MATRICES
    MAXWELL, G
    PACIFIC JOURNAL OF MATHEMATICS, 1972, 43 (02) : 421 - 428
  • [45] Power normal matrices
    Furtado, Susana
    Johnson, Charles R.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (20): : 5423 - 5432
  • [46] Completely normal matrices
    Sherman, Michael D.
    Smith, Ronald L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (07) : 2114 - 2122
  • [47] On normal Hankel matrices
    Ikramov Kh.D.
    Chugunov V.N.
    Journal of Mathematical Sciences, 2008, 150 (2) : 1951 - 1960
  • [48] Principally normal matrices
    Sherman, Michael D.
    Smith, Ronald L.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (05) : 2617 - 2627
  • [49] On matrices and K-relations
    Brijder, Robert
    Gyssens, Marc
    Van den Bussche, Jan
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2022, 90 (2-3) : 181 - 210
  • [50] On Matrices and K-Relations
    Brijder, Robert
    Gyssens, Marc
    Van den Bussche, Jan
    FOUNDATIONS OF INFORMATION AND KNOWLEDGE SYSTEMS, FOIKS 2020, 2020, 12012 : 42 - 57