ON A SUBCLASS OF INFINITY-REGULAR LANGUAGES

被引:0
|
作者
MEZNIK, I [1 ]
机构
[1] UNIV TURKU,DEPT MATH,SF-20500 TURKU 50,FINLAND
关键词
D O I
10.1016/0304-3975(88)90105-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [31] Squares of regular languages
    Lischke, G
    MATHEMATICAL LOGIC QUARTERLY, 2005, 51 (03) : 299 - 304
  • [32] On the Density of Regular Languages
    Koga, Toshihiro
    FUNDAMENTA INFORMATICAE, 2019, 168 (01) : 45 - 49
  • [33] Positional ω-regular languages
    Casares, Antonio
    Ohlmann, Pierre
    PROCEEDINGS OF THE 39TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, LICS 2024, 2024,
  • [34] ERRORS IN REGULAR LANGUAGES
    THOMASON, MG
    IEEE TRANSACTIONS ON COMPUTERS, 1974, C 23 (06) : 597 - 602
  • [35] DISINTEGRATION OF REGULAR LANGUAGES
    THIERRIN, G
    REVUE FRANCAISE D INFORMATIQUE DE RECHERCHE OPERATIONNELLE, 1969, 3 (NR3): : 45 - &
  • [36] Extensions of ω-Regular Languages
    Bojanczyk, Mikolaj
    Kelmendi, Edon
    Stefanski, Rafal
    Zetzsche, Georg
    PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, : 266 - 272
  • [37] On fuzzy regular languages
    Malik, DS
    Mordeson, JN
    Sen, MK
    INFORMATION SCIENCES, 1996, 88 (1-4) : 263 - 273
  • [38] Containment of regular languages in non-regular timing diagram languages is decidable
    Fisler, K
    COMPUTER AIDED VERIFICATION, 1997, 1254 : 155 - 166
  • [39] TRACE LANGUAGES DEFINED BY REGULAR STRING LANGUAGES
    AALBERSBERG, IJ
    WELZL, E
    RAIRO-INFORMATIQUE THEORIQUE ET APPLICATIONS-THEORETICAL INFORMATICS AND APPLICATIONS, 1986, 20 (02): : 113 - 119
  • [40] AN EILENBERG THEOREM FOR INFINITY-LANGUAGES
    WILKE, T
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 510 : 588 - 599