A Kuramoto coupling of quasi-cycle oscillators with application to neural networks

被引:10
|
作者
Greenwood, Priscilla E. [1 ]
McDonnell, Mark D. [2 ]
Ward, Lawrence M. [3 ,4 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ South Australia, Sch Informat Technol & Math Sci, Inst Telecommun Res, Computat & Theoret Neurosci Lab, Mawson Lakes, SA 5095, Australia
[3] Univ British Columbia, Dept Psychol, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
[4] Univ British Columbia, Brain Res Ctr, 2136 West Mall, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会; 澳大利亚研究理事会;
关键词
Kuramoto Coupling; Quasi-Cycles; Neural Oscillators; Stochastic Process; Excitation-Inhibition Interaction; Synchronization; Kuramoto Model; Phase Locking Index;
D O I
10.1166/jcsmd.2016.1091
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A family of stochastic processes has quasi-cycle oscillations if its oscillations are sustained by noise. For such a family we define a Kuramoto-type coupling of both phase and amplitude processes. We find that synchronization, as measured by the phase-locking index, increases with coupling strength, and appears, for larger network sizes, to have a critical value, at which the network moves relatively abruptly from incoherence to complete synchronization as in Kuramoto couplings of fixed amplitude oscillators. We compare several aspects of the dynamics of unsynchronized and highly synchronized networks. Our motivation comes from synchronization in neural networks.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 50 条
  • [1] On the Critical Coupling for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2011, 10 (03): : 1070 - 1099
  • [2] Investigation on the quasi-cycle of black hole spin
    Wang, DX
    Xiao, K
    Lei, WH
    CHINESE PHYSICS LETTERS, 2001, 18 (03) : 466 - 468
  • [3] On the Critical Coupling Strength for Kuramoto Oscillators
    Doerfler, Florian
    Bullo, Francesco
    2011 AMERICAN CONTROL CONFERENCE, 2011, : 3239 - 3244
  • [4] Synchronization of Kuramoto oscillators in dense networks
    Lu, Jianfeng
    Steinerberger, Stefan
    NONLINEARITY, 2020, 33 (11) : 5905 - 5918
  • [5] Gluing Kuramoto coupled oscillators networks
    Canale, Eduardo
    Monzon, Pablo
    PROCEEDINGS OF THE 46TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-14, 2007, : 2301 - +
  • [6] Cluster Synchronization in Networks of Kuramoto Oscillators
    Favaretto, Chiara
    Cenedese, Angelo
    Pasqualetti, Fabio
    IFAC PAPERSONLINE, 2017, 50 (01): : 2433 - 2438
  • [7] Rapidly forming, slowly evolving, spatial patterns from quasi-cycle Mexican Hat coupling
    Greenwood, P. E.
    Ward, L. M.
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2019, 16 (06) : 6769 - 6793
  • [8] Matrix coupling and generalized frustration in Kuramoto oscillators
    Buzanello, Guilhermo L.
    Barioni, Ana Elisa D.
    de Aguiar, Marcus A. M.
    CHAOS, 2022, 32 (09)
  • [9] Partial Phase Cohesiveness in Networks of Networks of Kuramoto Oscillators
    Qin, Yuzhen
    Kawano, Yu
    Portoles, Oscar
    Cao, Ming
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (12) : 6100 - 6107
  • [10] Topology Control of Networks of Proximity Kuramoto Oscillators
    DeLellis, Pietro
    Falanga, Gianluca
    Garofalo, Franco
    Lo Iudice, Francesco
    2018 EUROPEAN CONTROL CONFERENCE (ECC), 2018, : 2194 - 2199