TESTING THE RANK AND DEFINITENESS OF ESTIMATED MATRICES WITH APPLICATIONS TO FACTOR, STATE-SPACE AND ARMA MODELS

被引:48
|
作者
GILL, L [1 ]
LEWBEL, A [1 ]
机构
[1] BRANDEIS UNIV,DEPT ECON,WALTHAM,MA 02254
关键词
ARMA MODELS; DEFINITENESS; ESTIMATED MATRICES; FACTOR ANALYSIS; RANK TESTING; STATE-SPACE;
D O I
10.2307/2290214
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider any consistent, asymptotically normal estimate A of an arbitrary rectangular or square matrix A. This article derives an explicit test for the rank of A and a related test of (semi) definiteness of A. Potential applications include testing for identification of structural models, testing for the number of state variables in state-space models (including tests for the order of autoregression moving average (ARMA) processes), consumer demand analysis applications, and testing for the number of factors in factor analysis and related procedures. The test is based on the Gaussian elimination Lower-Diagonal-Upper (LDU) decomposition. The test is illustrated with an empirical application to testing the order of ARMA processes.
引用
收藏
页码:766 / 776
页数:11
相关论文
共 50 条
  • [21] Uncertainties for recursive estimators in nonlinear state-space models, with applications to epidemiology
    Maryak, JL
    Spall, JC
    Silberman, GL
    AUTOMATICA, 1995, 31 (12) : 1889 - 1892
  • [22] On the computation of stable coupled state-space models for dynamic substructuring applications
    Dias, R. S. O.
    Martarelli, M.
    Chiariotti, P.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 205
  • [23] Noise covariance matrices in state-space models: A survey and comparison of estimation methodsPart I
    Dunik, Jindrich
    Straka, Ondrej
    Kost, Oliver
    Havlik, Jindrich
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (11) : 1505 - 1543
  • [24] Granger causality for state-space models
    Barnett, Lionel
    Seth, Anil K.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [25] ON GIBBS SAMPLING FOR STATE-SPACE MODELS
    CARTER, CK
    KOHN, R
    BIOMETRIKA, 1994, 81 (03) : 541 - 553
  • [26] State-space models for optical imaging
    Myers, Kary L.
    Brockwell, Anthony E.
    Eddy, William F.
    STATISTICS IN MEDICINE, 2007, 26 (21) : 3862 - 3874
  • [27] DERIVATION OF STATE-SPACE MODELS OF CRYSTALLIZERS
    DEWOLF, S
    JAGER, J
    VISSER, B
    KRAMER, HJM
    BOSGRA, OH
    ACS SYMPOSIUM SERIES, 1990, 438 : 144 - 158
  • [28] State-Space Models for Control and Identification
    2005, Springer Verlag (308):
  • [29] Bootstrapping Periodic State-Space Models
    Guerbyenne, Hafida
    Hamdi, Faycal
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (02) : 374 - 401
  • [30] Inequality Constrained State-Space Models
    Qian, Hang
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2019, 37 (02) : 350 - 362