ON HEREDITARILY NORMAL COMPACT SPACES, IN WHICH REGULAR CLOSED SUBSETS ARE G-DELTA-SETS

被引:1
|
作者
BATUROV, DP [1 ]
机构
[1] OREL STATE PEDAGOG INST,DEPT MATH,302015 ORYOL,RUSSIA
关键词
HEREDITARILY NORMAL COMPACT SPACE; PERFECTLY NORMAL COMPACT SPACE; G-DELTA-SET;
D O I
10.1016/0166-8641(94)90128-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the following statement is independent of and consistent with the usual axioms of set theory: If X is a hereditarily normal compact space, in which every regular closed set is a G(delta), then in X every closed set is a G(delta).
引用
收藏
页码:151 / 155
页数:5
相关论文
共 50 条
  • [41] A CLASS OF SPACES IN WHICH COMPACT-SETS ARE FINITE
    SHARMA, PL
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1981, 24 (03): : 373 - 375
  • [42] On g*-Closed Sets in Fuzzy Topological Spaces
    Paul, G.
    Das, B.
    Bhattacharya, B.
    [J]. RECENT ADVANCES IN INTELLIGENT INFORMATION SYSTEMS AND APPLIED MATHEMATICS, 2020, 863 : 745 - 757
  • [43] gΔμ*-Closed Sets in Generalized Topological Spaces
    Jeyanthi, P.
    Nalayini, P.
    Noiri, T.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2021, 39 (03): : 9 - 16
  • [44] G(delta)-sets in topological spaces and games
    Just, W
    Scheepers, M
    Steprans, J
    Szeptycki, PJ
    [J]. FUNDAMENTA MATHEMATICAE, 1997, 153 (01) : 41 - 58
  • [45] Generalized star star regular closed sets in bitopological spaces
    Rao, K. Chandrasekhara
    Kannan, K.
    Narasimhan, D.
    [J]. NATIONAL ACADEMY SCIENCE LETTERS-INDIA, 2008, 31 (1-2): : 31 - 33
  • [46] IN WHAT SPACES IS EVERY CLOSED NORMAL CONE REGULAR
    MCARTHUR, CW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (07): : 1051 - &
  • [47] ON THE NORMAL COHOMOLOGICAL DIMENSION OF OPEN SUBSETS OF COMPLETELY REGULAR SPACES
    SKURIKHIN, EE
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) : 254 - 255
  • [48] COMPACT G-SOUSLIN SETS ARE G DELTA,S
    BRAUDE, EJ
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (01) : 250 - 251
  • [49] Between *-closed sets and I-g-closed sets in ideal topological spaces
    Noiri T.
    Popa V.
    [J]. Rendiconti del Circolo Matematico di Palermo, 2010, 59 (2) : 251 - 260
  • [50] The spaces of compact convex sets and bounded closed convex sets in a Banach space
    Sakai, Katsuro
    [J]. HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (01): : 289 - 300