INTEGRABLE MAPPINGS AND NONLINEAR INTEGRABLE LATTICE EQUATIONS

被引:122
|
作者
PAPAGEORGIOU, VG
NIJHOFF, FW
CAPEL, HW
机构
[1] CLARKSON UNIV, INST NONLINEAR STUDIES, POTSDAM, NY 13676 USA
[2] UNIV AMSTERDAM, INST THEORET FYS, 1018 XE AMSTERDAM, NETHERLANDS
关键词
D O I
10.1016/0375-9601(90)90876-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Periodic initial value problems of time and space discretizations of integrable partial differential equations give rise to multi-dimensional integrable mappings. Using the associated linear spectral problems (Lax pairs), a systematic derivation is given of the corresponding sets of polynomial invariants. The level sets are algebraic varieties on which the trajectories of the corresponding dynamical systems lie. © 1990.
引用
收藏
页码:106 / 114
页数:9
相关论文
共 50 条
  • [21] INTEGRABLE GRADED MANIFOLDS AND NONLINEAR EQUATIONS
    SAVELIEV, MV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 95 (02) : 199 - 216
  • [22] Stability in integrable nonlocal nonlinear equations
    Cen, Julia
    Correa, Francisco
    Fring, Andreas
    Taira, Takano
    PHYSICS LETTERS A, 2022, 435
  • [23] ALTERNATIVE INTEGRABLE EQUATIONS OF NONLINEAR OPTICS
    BURTSEV, SP
    GABITOV, IR
    PHYSICAL REVIEW A, 1994, 49 (03): : 2065 - 2070
  • [24] Integrable equations in nonlinear geometrical optics
    Konopelchenko, B
    Moro, A
    STUDIES IN APPLIED MATHEMATICS, 2004, 113 (04) : 325 - 352
  • [25] INTEGRABLE MAPPINGS AND SOLITON-EQUATIONS .2.
    QUISPEL, GRW
    ROBERTS, JAG
    THOMPSON, CJ
    PHYSICA D, 1989, 34 (1-2): : 183 - 192
  • [26] INTEGRABLE MAPPINGS DERIVED FROM SOLITON-EQUATIONS
    QUISPEL, GRW
    CAPEL, HW
    PAPAGEORGIOU, VG
    NIJHOFF, FW
    PHYSICA A, 1991, 173 (1-2): : 243 - 266
  • [27] Higher dimensional integrable mappings derived from coupled discrete nonlinear Schrodinger equations
    Sahadevan, R.
    Rajakumar, S.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (04)
  • [28] Algebraic entropy of (integrable) lattice equations and their reductions
    Roberts, John A. G.
    Tran, Dinh T.
    NONLINEARITY, 2019, 32 (02) : 622 - 653
  • [29] Multidimensional inverse scattering of integrable lattice equations
    Butler, Samuel
    NONLINEARITY, 2012, 25 (06) : 1613 - 1634
  • [30] Lie symmetries for integrable evolution equations on the lattice
    Levi, D
    Rodríguez, MA
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (47): : 8303 - 8316