CONVEXITY PROPERTIES OF THE ERLANG LOSS FORMULA

被引:41
|
作者
HAREL, A
机构
[1] Rutgers Univ, , NJ
关键词
D O I
10.1287/opre.38.3.499
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
We prove that the throughput of the M/G/x/x system is jointly concave in the arrival and service rates. We also show that the fraction of customers lost in the M/G/x/x system is convex in the arrival rate, if the traffic intensity is below some ρ* and concave if the traffic intensity is greater than ρ*. For 18 or less servers, ρ* is less than one. For 19 or more servers, ρ* is between 1 and 1.5. Also, the fraction lost is convex in the service rate, but not jointly convex in the two rates. These results are useful in the optimal design of queueing systems.
引用
收藏
页码:499 / 505
页数:7
相关论文
共 50 条
  • [41] Application of Erlang's Formula for Non-Poisson Flows
    Schneps-Schneppe, M. A.
    Sedols, J. J.
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2011, 45 (02) : 86 - 93
  • [42] A lower bound for the Erlang C formula in the Halfin–Whitt regime
    A. J. E. M. Janssen
    Johan S. H. van Leeuwaarden
    Bert Zwart
    Queueing Systems, 2011, 68 : 361 - 363
  • [43] EFFICIENT APPROACHES TO ERLANG LOSS FUNCTION COMPUTATIONS
    SHIMI, TN
    PARK, YL
    COMSAT TECHNICAL REVIEW, 1983, 13 (01): : 143 - 155
  • [44] SCHUR-CONVEXITY OF THE WEIGHTED QUADRATURE FORMULA
    Kovac, Sanja
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2019, 22 (04): : 1397 - 1403
  • [45] Erlang loss models for the static deployment of ambulances
    Restrepo, Mateo
    Henderson, Shane G.
    Topaloglu, Huseyin
    HEALTH CARE MANAGEMENT SCIENCE, 2009, 12 (01) : 67 - 79
  • [46] On the speed of convergence to stationarity of the Erlang loss system
    Erik A. van Doorn
    Alexander I. Zeifman
    Queueing Systems, 2009, 63
  • [47] On the Erlang Loss Model with Time Dependent Input
    Charles Knessl
    Yongzhi Peter Yang
    Queueing Systems, 2006, 52 : 49 - 104
  • [48] On the speed of convergence to stationarity of the Erlang loss system
    van Doorn, Erik A.
    Zeifman, Alexander I.
    QUEUEING SYSTEMS, 2009, 63 (1-4) : 241 - 252
  • [49] Optimal Control Problems for Erlang Loss Systems
    Lefebvre, Mario
    AXIOMS, 2025, 14 (02)
  • [50] Monotonicity and supermodularity results for the Erlang loss system
    Oner, K. B.
    Kiesmuller, G. P.
    van Houtum, G. J.
    OPERATIONS RESEARCH LETTERS, 2009, 37 (04) : 265 - 268