INTEGRATION BY PARTS AND EXTENDED STOCHASTIC INTEGRALS

被引:0
|
作者
DALETSKII, YL
机构
关键词
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:432 / 433
页数:2
相关论文
共 50 条
  • [31] INTEGRATION BY PARTS FORMULA AND SHIFT HARNACK INEQUALITY FOR STOCHASTIC EQUATIONS
    Wang, Feng-Yu
    ANNALS OF PROBABILITY, 2014, 42 (03): : 994 - 1019
  • [32] The neutrosophic integrals by parts
    Alhasan, Yaser Ahmad
    Neutrosophic Sets and Systems, 2021, 45 : 306 - 319
  • [33] Erratum to: Integration by Parts for Perron Type Integrals of Order 1 and 2 in Riesz Spaces
    A. Boccuto
    A. R. Sambucini
    V. A. Skvortsov
    Results in Mathematics, 2010, 57 : 393 - 396
  • [34] FORMULA OF INTEGRATION BY PARTS AND INTERRELATION OF INFINITELY MULTIPLE WIENER INTEGRALS WITH DIFFERENTIAL-EQUATIONS
    CHABANYUK, YM
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (06): : 25 - 27
  • [35] Complete sets of logarithmic vector fields for integration-by-parts identities of Feynman integrals
    Boehm, Janko
    Georgoudis, Alessandro
    Larsen, Kasper J.
    Schulze, Mathias
    Zhang, Yang
    PHYSICAL REVIEW D, 2018, 98 (02)
  • [36] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Bendle, Dominik
    Boehm, Janko
    Decker, Wolfram
    Georgoudis, Alessandro
    Pfreundt, Franz-Josef
    Rahn, Mirko
    Wasser, Pascal
    Zhang, Yang
    JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (02)
  • [37] Integration-by-parts reductions of Feynman integrals using Singular and GPI-Space
    Dominik Bendle
    Janko Böhm
    Wolfram Decker
    Alessandro Georgoudis
    Franz-Josef Pfreundt
    Mirko Rahn
    Pascal Wasser
    Yang Zhang
    Journal of High Energy Physics, 2020
  • [38] ON THE CONVERGENCE OF ORDINARY INTEGRALS TO STOCHASTIC INTEGRALS
    WONG, E
    ZAKAI, M
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05): : 1560 - 1564
  • [39] QUANTUM STOCHASTIC INTEGRALS AS BELATED INTEGRALS
    BARNETT, C
    LINDSAY, JM
    WILDE, IF
    GLASGOW MATHEMATICAL JOURNAL, 1992, 34 : 165 - 173
  • [40] Integration by Parts Formula with Respect to Jump Times for Stochastic Differential Equations
    Bally, Vlad
    Clement, Emmanuelle
    STOCHASTIC ANALYSIS 2010, 2011, : 7 - 29