Intrusion Detection System based on Hidden Conditional Random Fields

被引:0
|
作者
Luo, Jun [1 ]
Gao, Zenghui [1 ]
机构
[1] Chongqing Univ, Key Lab Optoelect Technol & Syst, Minist Educ, Chongqing 400030, Peoples R China
关键词
Backward Feature Elimination Wrapper; HCRFs; Intrusion Detection System; Network Security; Two-stage Feature Selection;
D O I
10.14257/ijsia.2015.9.9.28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Intrusion detection is an important way to ensure the security of computers and networks. In this paper, a new intrusion detection system (IDS) is proposed based on Hidden Conditional Random Fields (HCRFs). In order to optimize the performance of HCRFs, we bring forward the Two-stage Feature Selection method, which contains Manual Feature Selection method and Backward Feature Elimination Wrapper (BFEW) method. The BFEW is a feature selection method which is introduced based on wrapper approach. Experimental results on KDD99 dataset show that the proposed IDS not only has a great advantage in detection efficiency but also has a higher accuracy when compared with other well-known methods.
引用
下载
收藏
页码:321 / 336
页数:16
相关论文
共 50 条
  • [41] Adaptive foreground and shadow segmentation using hidden conditional random fields
    Yi-ping Chu
    Xiu-zi Ye
    Jiang Qian
    Yin Zhang
    San-yuan Zhang
    Journal of Zhejiang University-SCIENCE A, 2007, 8 : 586 - 592
  • [42] Model and Feature Selection in Hidden Conditional Random Fields with Group Regularization
    Cilla, Rodrigo
    Patricio, Miguel A.
    Berlanga, Antonio
    Molina, Jose M.
    HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, 2013, 8073 : 140 - 149
  • [43] Deep-Structured Hidden Conditional Random Fields for Phonetic Recognition
    Yu, Dong
    Deng, Li
    11TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2010 (INTERSPEECH 2010), VOLS 3 AND 4, 2010, : 2986 - 2989
  • [44] Non-parametric Hidden Conditional Random Fields for Action Classification
    Raman, Natraj
    Maybank, S. J.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3256 - 3263
  • [45] Adaptive foreground and shadow segmentation using hidden conditional random fields
    Chu Yi-ping
    Ye Xiu-zi
    Qian Jiang
    Zhang Yin
    Zhang San-yuan
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (04): : 586 - 592
  • [46] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Fariselli, Piero
    Savojardo, Castrense
    Martelli, Pier Luigi
    Casadio, Rita
    ALGORITHMS FOR MOLECULAR BIOLOGY, 2009, 4 : 13
  • [47] Adaptive video segmentation algorithm using hidden conditional random fields
    Chu, Yi-Ping
    Zhang, Yin
    Ye, Xiu-Zi
    Zhang, San-Yuan
    Zidonghua Xuebao/Acta Automatica Sinica, 2007, 33 (12): : 1252 - 1258
  • [48] Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields
    Barutcuoglu, Zafer
    Airoldi, Edoardo M.
    Dumeaux, Vanessa
    Schapire, Robert E.
    Troyanskaya, Olga G.
    BIOINFORMATICS, 2009, 25 (10) : 1307 - 1313
  • [49] Robust Incremental Hidden Conditional Random Fields for Human Action Recognition
    Vrigkas, Michalis
    Mastora, Ermioni
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 126 - 136
  • [50] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Piero Fariselli
    Castrense Savojardo
    Pier Luigi Martelli
    Rita Casadio
    Algorithms for Molecular Biology, 4