A UNIQUENESS THEOREM FOR STURM-LIOUVILLE OPERATORS WITH EIGENPARAMETER DEPENDENT BOUNDARY CONDITIONS

被引:3
|
作者
Wang, Yu Ping [1 ]
机构
[1] Nanjing Forestry Univ, Dept Appl Math, Nanjing 210037, Jiangsu, Peoples R China
来源
TAMKANG JOURNAL OF MATHEMATICS | 2012年 / 43卷 / 01期
关键词
Gesztesy-Simon theorem; inverse problem; eigenparameter dependent; boundary condition; spectrum;
D O I
10.5556/j.tkim.43.2012.145-152
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we discuss the inverse problem for Sturm-Liouville operators with boundary conditions having fractional linear function of spectral parameter on the finite interval [0,1]. Using Weyl m-function techniques, we establish a uniqueness theorem. i.e., If q(x) is prescribed on [0, + 1/2 + alpha/2] for some alpha is an element of [0,1), then the potential q(x) on the interval [0,1] and fractional linear function a(2)lambda+b(2)/c(2)lambda+d(2) of the boundary condition are, uniquely determined by a subset S subset of sigma(L) and fractional linear function a(1)lambda+b(1)/c(1)lambda+d(1) of the boundary condition.
引用
收藏
页码:145 / 152
页数:8
相关论文
共 50 条