Multiparameter Sturm-Liouville problems with eigenparameter dependent boundary conditions

被引:4
|
作者
Bhattacharyya, T [1 ]
Binding, PA
Seddighi, K
机构
[1] Indian Inst Sci, Dept Math, Bangalore 560012, Karnataka, India
[2] Univ Calgary, Dept Math, Calgary, AB T2N 1N4, Canada
[3] Shiraz Univ, Dept Math, Shiraz, Iran
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1006/jmaa.2001.7695
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A system of ordinary differential equations, -y(j)" + q(j)y(j) = (Sigma(k=1)(n) lambda(k)r(jk)) y(j), j = 1,...,n, with real valued and continuous coefficient functions q(j), r(jk) is studied on [0, 1] subject to boundary conditions y(j)'(0)/y(j)(0) = cot B-j and b(j)y(j)(1) - d(j)y(j)'(1) = e(j)(T)lambda(c(j)y(j)'(1) - a(j)y(j)(1)) (0.2) for j = 1,...,n. Here E-T = [e(1), e(2) (...) e(n)] is an arbitrary n x n matrix of real numbers and omega(j) = a(j)d(j) - b(j)c(j) not equal 0. A point lambda = [lambda(1) ... lambda(n)](T) is an element of C-n, satisfying (0.1) and (0.2) is called an eigenvalue of the system. Results are given on the existence and location of the eigenvalues and completeness and oscillation of the eigenfunctions. (C) 2001 Elsevier Science.
引用
收藏
页码:560 / 576
页数:17
相关论文
共 50 条