Persistence of cyclic left distributive algebras

被引:8
|
作者
Drapal, A
机构
[1] Department of Mathematics, Charles University, Prague
关键词
D O I
10.1016/0022-4049(94)00142-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A(k) = A(k)(*) denote the left distributive groupoid on (0,1,...,2(k) - 1} such that a* 1 = + 1 mod 2(k) for every a is an element of A(k). Let d greater than or equal to 0 and put r = max{i;2(i) divides d). For a =Sigma a(i)2(i) is an element of A(k), a(i) is an element of{0,1}, Put nu(d)(a) =Sigma a(i) nu(d)(2(i)) and nu(d)(2(i)) = 2((i+1)2d) -2(i2)d. Then nu(d): A(k) -->A(k2)(d) is a groupoid homomorphism iff k less than or equal to 2(r+1).
引用
收藏
页码:137 / 165
页数:29
相关论文
共 50 条
  • [21] Chain algebras of finite distributive lattices
    Gasanova, Oleksandra
    Nicklasson, Lisa
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2024, 59 (02) : 473 - 494
  • [22] Divided power algebras and distributive laws
    Ikonicoff, Sacha
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (08)
  • [23] Distributive lattices and Auslander regular algebras
    Iyama, Osamu
    Marczinzik, Rene
    ADVANCES IN MATHEMATICS, 2022, 398
  • [24] Congruences of finite distributive concept algebras
    Canter, B
    CONCEPT LATTICES, PROCEEDINGS, 2004, 2961 : 128 - 141
  • [25] Associative Algebras with a Distributive Lattice of Subalgebras
    Gein, A. G.
    ALGEBRA AND LOGIC, 2020, 59 (05) : 349 - 356
  • [26] NOTES ON THE REPRESENTATION OF DISTRIBUTIVE MODAL ALGEBRAS
    Celani, Sergio A.
    MISKOLC MATHEMATICAL NOTES, 2008, 9 (02): : 81 - 89
  • [27] SKELETONS OF CONGRUENCE DISTRIBUTIVE VARIETIES OF ALGEBRAS
    PINUS, AG
    ALGEBRA UNIVERSALIS, 1994, 32 (04) : 531 - 544
  • [28] Distributive lattices of varieties of Novikov algebras
    Vladimir Dotsenko
    Bekzat Zhakhayev
    manuscripta mathematica, 2025, 176 (2)
  • [29] Distributive Algebras, Isoclinism, and Invariant Probabilities
    Buckley, Stephen M.
    NONCOMMUTATIVE RINGS AND THEIR APPLICATIONS, 2015, 634 : 31 - 52
  • [30] Wreath Products of Distributive Forest Algebras
    Hahn, Michael
    Krebs, Andreas
    Straubing, Howard
    LICS'18: PROCEEDINGS OF THE 33RD ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, 2018, : 512 - 520