A COMPARISON STUDY OF BINARY FEEDFORWARD NEURAL NETWORKS AND DIGITAL CIRCUITS

被引:13
|
作者
ANDREE, HMA [1 ]
BARKEMA, GT [1 ]
LOURENS, W [1 ]
TAAL, A [1 ]
VERMEULEN, JC [1 ]
机构
[1] NIKHEF H,AMSTERDAM,NETHERLANDS
关键词
BINARY FEEDFORWARD NEURAL NETWORKS; LOGIC CIRCUITS; HARDWIRED IMPLEMENTATION;
D O I
10.1016/S0893-6080(05)80123-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A comparison study was carried out between feedforward neural networks composed of binary linear threshold units and digital circuits. These networks were generated by the regular partitioning algorithm and a modified Quine-McCluskey algorithm, respectively. The size of both types of networks and their generalisation properties are compared as a function of the nearest-neighbour correlation in the binary input sets. The ratio of the number of components required by digital circuits and the number of neurons grows linearly for the input sets considered The considered neural networks do not outperform digital circuits with respect to generalisation. Sensitivity analysis leads to a preference for digital circuits, especially for increasing number of inputs. In the case of analog input sets, hybrid networks of binary neurons and logic gates are of interest.
引用
收藏
页码:785 / 790
页数:6
相关论文
共 50 条
  • [41] Interpolation functions of feedforward neural networks
    Li, HX
    Lee, ES
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 46 (12) : 1861 - 1874
  • [42] Channel equalization by feedforward neural networks
    Lu, B
    Evans, BL
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 5: SYSTEMS, POWER ELECTRONICS, AND NEURAL NETWORKS, 1999, : 587 - 590
  • [43] A New Formulation for Feedforward Neural Networks
    Razavi, Saman
    Tolson, Bryan A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (10): : 1588 - 1598
  • [44] Global Optimization of Feedforward Neural Networks
    LIANG Xun XIA Shaowei Department of Automation
    JournalofSystemsScienceandSystemsEngineering, 1993, (03) : 273 - 280
  • [45] Injecting Chaos in Feedforward Neural Networks
    Ahmed, Sultan Uddin
    Shahjahan, Md.
    Murase, Kazuyuki
    NEURAL PROCESSING LETTERS, 2011, 34 (01) : 87 - 100
  • [46] Interpolation representation of feedforward neural networks
    Li, HX
    Li, LX
    Wang, JY
    MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (7-8) : 829 - 847
  • [47] Injecting Chaos in Feedforward Neural Networks
    Sultan Uddin Ahmed
    Md. Shahjahan
    Kazuyuki Murase
    Neural Processing Letters, 2011, 34 : 87 - 100
  • [48] A NEW MODEL OF FEEDFORWARD NEURAL NETWORKS
    WANG, DX
    TAI, JW
    PHYSICS LETTERS A, 1992, 162 (01) : 41 - 44
  • [49] Topology of Learning in Feedforward Neural Networks
    Gabella, Maxime
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (08) : 3588 - 3592
  • [50] Quantum generalisation of feedforward neural networks
    Wan, Kwok Ho
    Dahlsten, Oscar
    Kristjansson, Hler
    Gardner, Robert
    Kim, M. S.
    NPJ QUANTUM INFORMATION, 2017, 3