A Note on Performance of Conditional Akaike Information Criteria in Linear Mixed Models

被引:0
|
作者
Lee, Yonghee [1 ]
机构
[1] Univ Seoul, Dept Stat, 163 Seoulsiripdae Ro, Seoul 130743, South Korea
关键词
linear mixed models; variance components; selection; Akaike Information Criteria; Bayesian Information Criteria; conditional distribution; maximum likelihood estimation;
D O I
10.5351/CSAM.2015.22.5.507
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is not easy to select a linear mixed model since the main interest for model building could be different and the number of parameters in the model could not be clearly defined. In this paper, performance of conditional Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected conditional Akaike Information Criteria shows promising performance when candidate models exclude large models containing the true model, but bias-corrected one prefers over-parametrized models more intensively when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some difficulty to select the true model when the design for random effects is nested.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 50 条
  • [41] Indicators of hotel profitability: Model selection using Akaike information criteria
    Taylor, D. Christopher
    Snipes, Michael
    Barber, Nelson A.
    [J]. TOURISM AND HOSPITALITY RESEARCH, 2018, 18 (01) : 61 - 71
  • [42] Conditional Akaike information under covariate shift with application to small area estimation
    Kawakubo, Yuki
    Sugasawa, Shonosuke
    Kubokawa, Tatsuya
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (02): : 316 - 335
  • [43] Model selection for penalized spline smoothing using akaike information criteria
    Wager, Carrie
    Vaida, Florin
    Kauermann, Goeran
    [J]. AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2007, 49 (02) : 173 - 190
  • [44] An Akaike information criterion for multiple event mixture cure models
    Dirick, Lore
    Claeskens, Gerda
    Baesens, Bart
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 241 (02) : 449 - 457
  • [45] A note on identification constraints and information criteria in Bayesian latent variable models
    Graves, Benjamin
    Merkle, Edgar C.
    [J]. BEHAVIOR RESEARCH METHODS, 2022, 54 (02) : 795 - 804
  • [46] A note on identification constraints and information criteria in Bayesian latent variable models
    Benjamin Graves
    Edgar C. Merkle
    [J]. Behavior Research Methods, 2022, 54 : 795 - 804
  • [47] Prediction of maize single-cross performance by mixed linear models with microsatellite marker information
    Balestre, M.
    Von Pinho, R. G.
    Souza, J. C.
    [J]. GENETICS AND MOLECULAR RESEARCH, 2010, 9 (02) : 1054 - 1068
  • [48] GARCH-Type Models and Performance of Information Criteria
    Javed, Farrukh
    Mantalos, Panagiotis
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (08) : 1917 - 1933
  • [49] ON THE AKAIKE INFORMATION CRITERION FOR CHOOSING MODELS FOR VARIOGRAMS OF SOIL PROPERTIES
    WEBSTER, R
    MCBRATNEY, AB
    [J]. JOURNAL OF SOIL SCIENCE, 1989, 40 (03): : 493 - 496
  • [50] Mixed Integer Nonlinear Program for Minimization of Akaike's Information Criterion
    Kimura, Keiji
    Waki, Hayato
    [J]. MATHEMATICAL SOFTWARE, ICMS 2016, 2016, 9725 : 292 - 300