A Note on Performance of Conditional Akaike Information Criteria in Linear Mixed Models

被引:0
|
作者
Lee, Yonghee [1 ]
机构
[1] Univ Seoul, Dept Stat, 163 Seoulsiripdae Ro, Seoul 130743, South Korea
关键词
linear mixed models; variance components; selection; Akaike Information Criteria; Bayesian Information Criteria; conditional distribution; maximum likelihood estimation;
D O I
10.5351/CSAM.2015.22.5.507
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is not easy to select a linear mixed model since the main interest for model building could be different and the number of parameters in the model could not be clearly defined. In this paper, performance of conditional Akaike Information Criteria and its bias-corrected version are compared with marginal Bayesian and Akaike Information Criteria through a simulation study. The results from the simulation study indicate that bias-corrected conditional Akaike Information Criteria shows promising performance when candidate models exclude large models containing the true model, but bias-corrected one prefers over-parametrized models more intensively when a set of candidate models increases. Marginal Bayesian and Akaike Information Criteria also have some difficulty to select the true model when the design for random effects is nested.
引用
收藏
页码:507 / 518
页数:12
相关论文
共 50 条
  • [1] Conditional Akaike information criterion for generalized linear mixed models
    Yu, Dalei
    Yau, Kelvin K. W.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (03) : 629 - 644
  • [2] A unifying approach to the estimation of the conditional Akaike information in generalized linear mixed models
    Saefken, Benjamin
    Kneib, Thomas
    van Waveren, Clara-Sophie
    Greven, Sonja
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2014, 8 : 201 - 225
  • [3] Conditional Akaike information under generalized linear and proportional hazards mixed models
    Donohue, M. C.
    Overholser, R.
    Xu, R.
    Vaida, F.
    [J]. BIOMETRIKA, 2011, 98 (03) : 685 - 700
  • [4] Conditional Akaike information for mixed-effects models
    Vaida, F
    Blanchard, S
    [J]. BIOMETRIKA, 2005, 92 (02) : 351 - 370
  • [5] Conditional information criteria for selecting variables in linear mixed models
    Srivastava, Muni S.
    Kubokawa, Tatsuya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 1970 - 1980
  • [6] Conditional Akaike Information Criteria for a Class of Poisson Mixture Models with Random Effects
    Yu, Dalei
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2016, 43 (04) : 1214 - 1235
  • [7] A note on conditional Akaike information for Poisson regression with random effects
    Lian, Heng
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2012, 6 : 1 - 9
  • [8] A note on conditional AIC for linear mixed-effects models
    Liang, Hua
    Wu, Hulin
    Zou, Guohua
    [J]. BIOMETRIKA, 2008, 95 (03) : 773 - 778
  • [9] Akaike and Bayesian Information Criteria for Hidden Markov Models
    Dridi, Noura
    Hadzagic, Melita
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (02) : 302 - 306
  • [10] Bias-reduced marginal Akaike information criteria based on a Monte Carlo method for linear mixed-effects models
    Sakamoto, Wataru
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2019, 46 (01) : 87 - 115