ELECTRONIC CONDUCTIVITY OF A SOLID OXIDE ELECTROLYTE IN THE LOW-TEMPERATURE RANGE

被引:12
|
作者
NAFE, H
机构
[1] Max-Planck-Institut für Festkörperforschung, 7000 Stuttgart 80
关键词
25;
D O I
10.1016/0167-2738(93)90226-S
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using the Hebb-Wagner polarized-cell technique the electronic conductivity of yttria-doped thoria as a model system for high temperature solid electrolytes was determined in the temperature range from 230 to 660-degrees-C as a function of the oxygen partial pressure at the reversible electrode as well as the polarization voltage and the polarization time. In contrast to the behaviour expected from previous high temperature investigations, the total electronic conductivity consists of four rather than two component parts, viz. the conventional p- and n-conductivity branches and two time-dependent conductivities with p- and n-type behaviour. Initially the time-dependent conductivity branches predominate over the conventional ones, but decay over a long period of time. As a consequence, in the low temperature range the behaviour of the electrolyte is mainly determined by the properties of the newly found rather than the hitherto known electronic conductivities. The observations could be interpreted as resulting from a slow redistribution of the electronic charge carriers within a system of four traps with different capture cross-sections and different rate excitation-recombination constants.
引用
收藏
页码:5 / 15
页数:11
相关论文
共 50 条
  • [21] LOW-TEMPERATURE THERMAL-CONDUCTIVITY MEASUREMENTS OF SOLID NEON
    CLEMANS, JE
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1974, 19 (03): : 337 - 337
  • [22] LOW-TEMPERATURE LATTICE THERMAL-CONDUCTIVITY OF SOLID ARGON
    GUPTA, IJ
    TRIKHA, SK
    PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1977, 84 (02): : K95 - K99
  • [23] Advanced electrolyte materials based on natural minerals for low-temperature solid oxide fuel cells applications
    Ettalibi, Oumaima
    Boumeriame, Hanane
    Achak, Ouafae
    Chafik, Tarik
    FUEL, 2024, 377
  • [24] Miniaturized Low-Temperature Solid Oxide Fuel Cells With An Yttria-Stabilized-Zirconia Foil Electrolyte
    Evans, A.
    Bieberle-Huetter, A.
    Bonderer, L. J.
    Hodel, P. Chen D.
    Rupp, J. L. M.
    Gauckler, L. J.
    SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02): : 989 - 993
  • [25] High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs
    Cardenas-Terrazas, P. S.
    Ayala-Ayala, M. T.
    Munoz-Saldana, J.
    Fuentes, A. F.
    Leal-Chavez, D. A.
    Ledezma-Sillas, J. E.
    Carreno-Gallardo, C.
    Herrera-Ramirez, J. M.
    IONICS, 2020, 26 (09) : 4579 - 4586
  • [26] High ionic conductivity dysprosium and tantalum Co-doped bismuth oxide electrolyte for low-temperature SOFCs
    P. S. Cardenas-Terrazas
    M. T. Ayala-Ayala
    J. Muñoz-Saldaña
    A. F. Fuentes
    D. A. Leal-Chavez
    J. E. Ledezma-Sillas
    C. Carreño-Gallardo
    J. M. Herrera-Ramirez
    Ionics, 2020, 26 : 4579 - 4586
  • [27] Low-temperature solid-oxide fuel cells
    Eric Wachsman
    Tatsumi Ishihara
    John Kilner
    MRS Bulletin, 2014, 39 : 773 - 779
  • [28] A perspective on low-temperature solid oxide fuel cells
    Gao, Zhan
    Mogni, Liliana V.
    Miller, Elizabeth C.
    Railsback, Justin G.
    Barnett, Scott A.
    ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (05) : 1602 - 1644
  • [29] Low-temperature solid-oxide fuel cells
    Wachsman, Eric
    Ishihara, Tatsumi
    Kilner, John
    MRS BULLETIN, 2014, 39 (09) : 773 - 782
  • [30] A halide-oxide composite solid-state electrolyte for enhancing ionic conductivity by promoting interfacial healing through low-temperature heat treatment
    Xu, Chenyuan
    Chao, Yu
    Yang, Sisheng
    Li, Borong
    Yu, Yan
    Xu, Xiaoming
    Sun, Yulong
    Liu, Zheyuan
    Wang, Qian
    Yang, Chengkai
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025,