A Spatio-Temporal Urban Growth Modelling. Case Study: Tehran Metropolis

被引:0
|
作者
Mohammady, Sassan [1 ]
Delavar, Mahmoud Reza [2 ]
机构
[1] Univ Tehran, Coll Engn, Dept Surveying & Geomat Engn, GIS Div, Tehran, Iran
[2] Univ Tehran, Coll Engn, Ctr Excellence Geomat Engn Disaster Management, Dept Surveying & Geomat Engn, Tehran, Iran
来源
关键词
urban growth; modelling; logistic regression; GIS;
D O I
暂无
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Different models have been attempted for modelling urban expansion. Models are tools for detecting changes and considering the relationship between land use and land use change factors. In this research we used the Logistic Regression method for modelling the urban expansion pattern in Tehran Metropolis during 1988-2010, employing landsat imageries acquired in 1988, 1999 and 2010. The effective parameters employed in this study include distance to principle roads, distance to developed region, distance to faults, distance to green space, elevation, slope and the number of urban pixels in a 3 by 3 neighbourhood. Percent Correct Match, Kappa statistics and Figure of Merit have been used for evaluating the accuracy of the model. We concluded that the distance to the residential area influences the urban development of Tehran greatly as compared to other factors. On the other hand, the number of urban pixels in a 3* 3 neighbourhood had the lowest impact on urban development for this megacity in this period of time.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [31] Modelling spatio-temporal environmental data
    Rasinmäki, J
    ENVIRONMENTAL MODELLING & SOFTWARE, 2003, 18 (10) : 877 - 886
  • [32] Spatio-temporal stochastic modelling (METMAVI)
    Menezes, Raquel
    Manuela Goncalves, A.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2014, 28 (05) : 1167 - 1169
  • [33] NeuCube(ST) for Spatio-Temporal Data Predictive Modelling with a Case Study on Ecological Data
    Tu, Enmei
    Kasabov, Nikola
    Othman, Muhaini
    Li, Yuxiao
    Worner, Susan
    Yang, Jie
    Jia, Zhenghong
    PROCEEDINGS OF THE 2014 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2014, : 638 - 645
  • [34] Modelling spatio-temporal variability of temperature
    Xiaofeng Cao
    Ostap Okhrin
    Martin Odening
    Matthias Ritter
    Computational Statistics, 2015, 30 : 745 - 766
  • [35] Spatio-Temporal Variations of Indoor Bioaerosols in Different Socio-Economic Zones of an Urban Metropolis
    Balyan, Palak
    Ghosh, Chirashree
    Das, Shukla
    Banerjee, B. D.
    POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2019, 28 (06): : 4087 - 4097
  • [36] Modelling of spatio-temporal variation of snowcover
    Schaumberger, Andreas
    Formayer, Herbert
    Tiefenbach, Priska
    Grillenberger, Joerg
    Strobl, Josef
    MITTEILUNGEN DER OSTERREICHISCHEN GEOGRAPHISCHEN GESELLSCHAFT, 2008, 150 : 163 - 182
  • [37] SPATIO-TEMPORAL MODELLING OF EXTREME STORMS
    Economou, Theodoros
    Stephenson, David B.
    Ferro, Christopher A. T.
    ANNALS OF APPLIED STATISTICS, 2014, 8 (04): : 2223 - 2246
  • [38] Modelling spatio-temporal variability of temperature
    Cao, Xiaofeng
    Okhrin, Ostap
    Odening, Martin
    Ritter, Matthias
    COMPUTATIONAL STATISTICS, 2015, 30 (03) : 745 - 766
  • [39] Spatio-temporal precipitation error propagation in runoff modelling: a case study in central Sweden
    Olsson, J.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2006, 6 (04) : 597 - 609
  • [40] Understanding Spatio-Temporal Urban Processes
    Rocha, Lais M. A.
    Bessa, Aline
    Chirigati, Fernando
    OFriel, Eugene
    Moro, Mirella M.
    Freire, Juliana
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 563 - 572