E6 AND THE ARITHMETIC OF A FAMILY OF NON-HYPERELLIPTIC CURVES OF GENUS 3

被引:11
|
作者
Thorne, Jack A. [1 ]
机构
[1] DPMMS, Cambridge CB3 0WB, England
来源
FORUM OF MATHEMATICS PI | 2015年 / 3卷
关键词
D O I
10.1017/fmp.2014.2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the arithmetic of a family of non-hyperelliptic curves of genus 3 over the field Q of rational numbers. These curves are the nearby fibers of the semi-universal deformation of a simple singularity of type E-6. We show that average size of the 2-Selmer sets of these curves is finite (if it exists). We use this to show that a positive proposition of these curves (when ordered by height) has integral points everywhere locally, but no integral points globally.
引用
收藏
页数:41
相关论文
共 50 条
  • [31] Modular invariants for genus 3 hyperelliptic curves
    Sorina Ionica
    Pınar Kılıçer
    Kristin Lauter
    Elisa Lorenzo García
    Adelina Mânzăţeanu
    Maike Massierer
    Christelle Vincent
    Research in Number Theory, 2019, 5
  • [32] Bielliptic curves of genus 3 in the hyperelliptic moduli
    Shaska, T.
    Thompson, F.
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (05) : 387 - 412
  • [33] Normal forms of hyperelliptic curves of genus 3
    Frey, Gerhard
    Kani, Ernst
    DESIGNS CODES AND CRYPTOGRAPHY, 2015, 77 (2-3) : 677 - 712
  • [34] Modular invariants for genus 3 hyperelliptic curves
    Ionica, Sorina
    Kilicer, Pinar
    Lauter, Kristin
    Garcia, Elisa Lorenzo
    Manzateanu, Adelina
    Massierer, Maike
    Vincent, Christelle
    RESEARCH IN NUMBER THEORY, 2019, 5 (01)
  • [35] ON THE MAXIMALITY OF HYPERELLIPTIC HOWE CURVES OF GENUS 3
    OHASHI, R. Y. O.
    KODAI MATHEMATICAL JOURNAL, 2022, 45 (02) : 282 - 294
  • [36] Group-theoretic Johnson classes and non-hyperelliptic curves with torsion Ceresa class
    Bisogno, Dean
    Li, Wanlin
    Litt, Daniel
    Srinivasan, Padmavathi
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7
  • [37] A note on a Brill-Noether locus over a non-hyperelliptic curve of genus 4
    Huh, Sukmoon
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2009, 7 (04): : 617 - 622
  • [38] Field of moduli of generalized Fermat curves of type (k, 3) with an application to non-hyperelliptic dessins d'enfants
    Hidalgo, Ruben A.
    Johnson, Pilar
    JOURNAL OF SYMBOLIC COMPUTATION, 2015, 71 : 60 - 72
  • [39] One-instanton predictions for non-hyperelliptic curves derived from M-theory
    Ennes, IP
    Naculich, SG
    Rhedin, H
    Schnitzer, HJ
    NUCLEAR PHYSICS B, 1998, 536 (1-2) : 245 - 257
  • [40] Hyperelliptic genus 3 curves with involutions and a Prym map
    Borowka, Pawel
    Shatsila, Anatoli
    MATHEMATISCHE NACHRICHTEN, 2024, 297 (08) : 3080 - 3094