LYAPUNOV EXPONENTS AND THE MERGER OF POINT-VORTEX CLUSTERS

被引:1
|
作者
JENTSCHEL, M
THESS, A
BAHR, U
机构
[1] TECH UNIV DRESDEN,INST STROMUNGSMECH,D-01062 DRESDEN,GERMANY
[2] TECH UNIV DRESDEN,INST THEORET PHYS,D-01062 DRESDEN,GERMANY
来源
PHYSICAL REVIEW E | 1995年 / 51卷 / 05期
关键词
D O I
10.1103/PhysRevE.51.5120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Vortex clusters in two-dimensional inviscid flow are studied by long-time integration of the point-vortex equations. We compute Lyapunov exponents and the Kolmogorov-Sinai entropy (KSE) as functions of the dimensionless centroid separation μ between two clusters, each of them containing two or four point vortices of equal strengths. It is demonstrated that the KSE of two four-vortex clusters increases rapidly if μ becomes smaller than μc3.2, and the merger time increases faster than exponentially for μ>μc. This result supports the conjecture that the merger of distant continuous vorticity fields is so exceedingly slow as to be numerically unidentifiable. © 1995 The American Physical Society.
引用
收藏
页码:5120 / 5123
页数:4
相关论文
共 50 条
  • [41] LYAPUNOV EXPONENTS - A SURVEY
    ARNOLD, L
    WIHSTUTZ, V
    LECTURE NOTES IN MATHEMATICS, 1986, 1186 : 1 - 26
  • [42] POINT-VORTEX INTERACTION IN AN OSCILLATORY DEFORMATION FIELD: HAMILTONIAN DYNAMICS, HARMONIC RESONANCE AND TRANSITION TO CHAOS
    Perrot, Xavier
    Carton, Xavier
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (04): : 971 - 995
  • [43] On quantum Lyapunov exponents
    Majewski, Wladyslaw A.
    Marciniak, Marcin
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (31): : L523 - L528
  • [44] EXTENDED LYAPUNOV EXPONENTS
    WIESEL, WE
    PHYSICAL REVIEW A, 1992, 46 (12): : 7480 - 7491
  • [45] Differentiability of Lyapunov Exponents
    Ferraiol, Thiago F.
    San Martin, Luiz A. B.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2020, 26 (02) : 289 - 310
  • [46] Parametric Lyapunov exponents
    De Thelin, Henry
    Gauthier, Thomas
    Vigny, Gabriel
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2021, 53 (03) : 660 - 672
  • [47] RECURRENCE AND LYAPUNOV EXPONENTS
    Saussol, B.
    Troubetzkoy, S.
    Vaienti, S.
    MOSCOW MATHEMATICAL JOURNAL, 2003, 3 (01) : 189 - 203
  • [48] INTEGRABILITY AND LYAPUNOV EXPONENTS
    Hammerlindl, Andy
    JOURNAL OF MODERN DYNAMICS, 2011, 5 (01) : 107 - 122
  • [49] Flexibility of Lyapunov exponents
    Bochi, J.
    Katok, A.
    Hertz, F. Rodriguez
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2022, 42 (02) : 554 - 591
  • [50] SECTIONAL LYAPUNOV EXPONENTS
    Arbieto, Alexander
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (09) : 3171 - 3178