SYMPLECTIC RUNGE-KUTTA AND RELATED METHODS - RECENT RESULTS

被引:36
|
作者
SANZSERNA, JM
机构
[1] Departamento de Matemática Aplicada y Computación, Facultad de Ciencias, Universidad de Valladolid, Valladolid
关键词
D O I
10.1016/0167-2789(92)90245-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Symplectic algorithms are numerical integrators for Hamiltonian systems that preserve the symplectic structure in phase space. In long time integrations these algorithms tend to perform better than their nonsymplectic counterparts. Some symplectic algorithms are derived by explicitly finding a generating function. Other symplectic algorithms are members of standard families of methods, such as Runge-Kutta methods, that just turn out to preserve the symplectic structure. Here we survey what is known about the second type of symplectic algorithms.
引用
收藏
页码:293 / 302
页数:10
相关论文
共 50 条
  • [41] Symmetric and symplectic exponentially fitted Runge-Kutta methods of high order
    Calvo, M.
    Franco, J. M.
    Montijano, J. I.
    Randez, L.
    COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (12) : 2044 - 2056
  • [42] Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems
    Mei, Lijie
    Wu, Xinyuan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 338 : 567 - 584
  • [43] A family of trigonometrically-fitted partitioned Runge-Kutta symplectic methods
    Monovasills, Th.
    Kalogiratou, Z.
    Simos, T. E.
    COMPUTATION IN MODERN SCIENCE AND ENGINEERING VOL 2, PTS A AND B, 2007, 2 : 1306 - +
  • [44] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    da Silva, Clauson Carvalho
    Lessig, Christian
    BIT NUMERICAL MATHEMATICS, 2022, 62 (04) : 1823 - 1840
  • [45] Variational symplectic diagonally implicit Runge-Kutta methods for isospectral systems
    Clauson Carvalho da Silva
    Christian Lessig
    BIT Numerical Mathematics, 2022, 62 : 1823 - 1840
  • [46] LINEARLY-IMPLICIT RUNGE-KUTTA METHODS BASED ON IMPLICIT RUNGE-KUTTA METHODS
    BRUDER, J
    APPLIED NUMERICAL MATHEMATICS, 1993, 13 (1-3) : 33 - 40
  • [47] FAMILY OF SYMPLECTIC IMPLICIT RUNGE-KUTTA FORMULAS
    SAITO, S
    SUGIURA, H
    MITSUI, T
    BIT, 1992, 32 (03): : 539 - 543
  • [48] New stability results for explicit Runge-Kutta methods
    Ait-Haddou, Rachid
    BIT NUMERICAL MATHEMATICS, 2019, 59 (03) : 585 - 612
  • [49] SOME STABILITY RESULTS FOR EXPLICIT RUNGE-KUTTA METHODS
    OWREN, B
    SEIP, K
    BIT, 1990, 30 (04): : 700 - 706
  • [50] REDUCIBLE RUNGE-KUTTA METHODS
    COOPER, GJ
    BIT, 1985, 25 (04): : 675 - 680