A self-similar Gaussian process

被引:1
|
作者
Sghir, Aissa [1 ,2 ]
机构
[1] Fac Sci Oujda, Lab Modelisat Stochast & Deterministe, BP 717, Oujda, Morocco
[2] URAC 04, Oujda, Morocco
关键词
Besov spaces; sub-fractional Brownian motion; fractional Brownian motion; P-variation; invariance principle; Chung's type law of iterated logarithm;
D O I
10.1515/rose-2014-0009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we introduce and study a self-similar Gaussian process denoted by S-H,S-K with parameters H is an element of (0, 1) and K is an element of [0, 1]. This process generalizes the well-known fractional Brownian motion introduced by Mandelbrot and Van Ness [10], the sub-fractional Brownian motion introduced by Bojdecki, Gorostiza and Talarczyket [3] and the Gaussian process introduced by Lei and Nualart [9] in order to obtain a decomposition in law of the bifractional Brownian motion.
引用
收藏
页码:85 / 92
页数:8
相关论文
共 50 条