SPLIT PRIMES AND INTEGER-VALUED POLYNOMIALS

被引:3
|
作者
MCQUILLAN, D
机构
[1] NATL UNIV IRELAND UNIV COLL DUBLIN,DEPT MATH,DUBLIN 4,IRELAND
[2] UNIV IOWA,IOWA CITY,IA 52242
关键词
D O I
10.1006/jnth.1993.1019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a Dedekind domain with field of fractions K, L = K(α) a finite separable extension of K, and S the integral closure of R in L. Let I be the subring of K[X] consisting of all polynomials g(x) in K[X] such that g(R) ⊂ R, and let Eα: I → L be the evaluation map defined by Eα(g(x)) = g(α). Then Eα(I) is precisely the overring of S determined by the prime ideals P of S which are split completely over R and at which α is integral. This answers a question posed by R. Gilmer and W. W. Smith (1985, Houston J. Math.11, No. 1, 65-74) in connection with the ideal structure of I and solved by them when R = Z and L = Q(√d). © 1993 Academic Press Inc.
引用
收藏
页码:216 / 219
页数:4
相关论文
共 50 条
  • [21] INTEGER-VALUED POLYNOMIALS AND SKOLEM PROPERTY
    CHABERT, JL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1978, 303 : 366 - 378
  • [22] IDEALS OF RINGS OF INTEGER-VALUED POLYNOMIALS
    BRIZOLIS, D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A63 - A63
  • [23] Integer-valued polynomials in several variables
    Mulay, SB
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (05) : 2409 - 2423
  • [24] On image sets of integer-valued polynomials
    Chapman, Scott T.
    Ponomarenko, Vadim
    JOURNAL OF ALGEBRA, 2011, 348 (01) : 350 - 353
  • [25] Mori domains of integer-valued polynomials
    Cahen, PJ
    Gabelli, S
    Houston, E
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2000, 153 (01) : 1 - 15
  • [26] SETS THAT DETERMINE INTEGER-VALUED POLYNOMIALS
    GILMER, R
    JOURNAL OF NUMBER THEORY, 1989, 33 (01) : 95 - 100
  • [27] Prufer Domains of Integer-Valued Polynomials
    Loper, K. Alan
    Syvuk, Mark
    MULTIPLICATIVE IDEAL THEORY AND FACTORIZATION THEORY: COMMUTATIVE AND NON-COMMUTATIVE PERSPECTIVES, 2016, 170 : 219 - 231
  • [28] Split absolutely irreducible integer-valued polynomials over discrete valuation domains
    Frisch, Sophie
    Nakato, Sarah
    Rissner, Roswitha
    JOURNAL OF ALGEBRA, 2022, 602 : 247 - 277
  • [29] Skolem properties and integer-valued polynomials: A survey
    Cahen, PJ
    Chabert, JL
    ADVANCES IN COMMUTATIVE RING THEORY, 1999, 205 : 175 - 195
  • [30] LOCALIZATIONS OF INTEGER-VALUED POLYNOMIALS AND OF THEIR PICARD GROUP
    Dipartimento di Scienze Matematiche, Informatiche e Fisiche, Università degli Studi di Udine, Udine, Italy
    arXiv,