MULTIPLE ORTHOGONAL POLYNOMIALS ON THE SEMICIRCLE

被引:0
|
作者
Milovanovic, Gradimir V. [1 ]
Cvetkovic, Aleksandar S. [1 ]
Stanic, Marija P. [2 ]
机构
[1] Fac Elect Engn, Dept Math, POB 73, Nish 18000, Serbia
[2] Fac Sci, Dept Math & Informat, Kragujevac 34000, Serbia
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper multiple orthogonal polynomials on the semicircle, investigated by Milovanovie and Stanie in [Math. Balkanica (N. S.) 18 (2004), 373-387] (complex polynomials orthogonal with respect to the complex-valued inner products [f, g](m) = integral(pi)(0) f (e(i theta))g(e(i theta))w(m)(e(i theta)) d theta, for m = 1, 2, ... , r) are considered. These polynomials satisfy a linear recurrence relation of order r + 1. Under suitable assumption on the weight functions w(m), m = 1, 2, ... , r, we express multiple orthogonal polynomials on the semicircle in terms of the type II multiple orthogonal (real) polynomials with respect to the weight function w(m) (x), m = 1, 2, ... , r. Specially, we consider the case r = 2 and express coefficients of corresponding recurrence relations in terms of coefficients of recurrence relation for the type II multiple orthogonal (real) polynomials. In particular, we obtain these type of polynomials associated with Jacobi weight functions.
引用
收藏
页码:41 / 55
页数:15
相关论文
共 50 条
  • [31] Classical multiple orthogonal polynomials of Angelesco system
    Lee, D. W.
    APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) : 1342 - 1351
  • [32] INTEGRAL AND HYPERGEOMETRIC REPRESENTATIONS FOR MULTIPLE ORTHOGONAL POLYNOMIALS
    Branquinho, Amílcar
    Díaz, Juan E.F.
    Foulquié-Moreno, Ana
    Mañas, Manuel
    Wolfs, Thomas
    arXiv,
  • [33] On multiple orthogonal polynomials for discrete Meixner measures
    Sorokin, V. N.
    SBORNIK MATHEMATICS, 2010, 201 (10) : 1539 - 1561
  • [34] Multiple Orthogonal Polynomials in Random Matrix Theory
    Kuijlaars, Arno B. J.
    PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 1417 - 1432
  • [35] Multiple orthogonal polynomials associated with Macdonald functions
    Van Assche, W
    Yakubovich, SB
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 229 - 244
  • [36] Some recurrence relations of multiple orthogonal polynomials
    Lee, DW
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (04) : 673 - 693
  • [37] On multiple orthogonal polynomials for three Meixner measures
    V. N. Sorokin
    Proceedings of the Steklov Institute of Mathematics, 2017, 298 : 294 - 316
  • [38] Multiple orthogonal polynomials associated with the exponential integral
    Van Assche, Walter
    Wolfs, Thomas
    STUDIES IN APPLIED MATHEMATICS, 2023, 151 (02) : 411 - 449
  • [39] Asymptotic γ-forms generated by multiple orthogonal polynomials
    Aptekarev, A. I.
    Lysov, V. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2011, 272 : S168 - S173
  • [40] Strong asymptotics for the Pollaczek multiple orthogonal polynomials
    A. I. Aptekarev
    G. López Lagomasino
    A. Martínez-Finkelshtein
    Doklady Mathematics, 2015, 92 : 709 - 713