FINITE HOMOGENEOUS 3-GRAPHS

被引:10
|
作者
LACHLAN, AH [1 ]
TRIPP, A [1 ]
机构
[1] SIMON FRASER UNIV,DEPT MATH & STAT,BURNABY,BC V5A 1S6,CANADA
关键词
HOMOGENEOUS STRUCTURE; HYPERGRAPH; PERMUTATION GROUP;
D O I
10.1002/malq.19950410302
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By ''3-graph'' we mean a pair (V, E) such that E subset of or equal to [V](3). We show that the only non-trivial finite 3-graphs homogeneous in the sense of Fraisse are those associated with the projective planes over GF(2) and GF(3), and with the projective lines over GF(5) and GF(9). To exclude other possibilities we use the classification of doubly transitive finite permutation groups.
引用
收藏
页码:287 / 306
页数:20
相关论文
共 50 条
  • [21] Turan H-densities for 3-graphs
    Ravry, Victor Falgas
    Vaughan, Emil R.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (03):
  • [22] Triangle-degrees in graphs and tetrahedron coverings in 3-graphs
    Falgas-Ravry, Victor
    Markstrom, Klas
    Zhao, Yi
    COMBINATORICS PROBABILITY & COMPUTING, 2021, 30 (02): : 175 - 199
  • [23] Ryser's conjecture for tripartite 3-graphs
    Aharoni, R
    COMBINATORICA, 2001, 21 (01) : 1 - 4
  • [24] ON RAMSEY-TURAN NUMBERS FOR 3-GRAPHS
    SIDORENKO, AF
    JOURNAL OF GRAPH THEORY, 1992, 16 (01) : 73 - 78
  • [25] Hamiltonicity in Cherry-quasirandom 3-graphs
    Gan, Luyining
    Han, Jie
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 102
  • [26] Ryser's Conjecture for Tripartite 3-Graphs
    Ron Aharoni
    Combinatorica, 2001, 21 : 1 - 4
  • [27] THE CODEGREE THRESHOLD FOR 3-GRAPHS WITH INDEPENDENT NEIGHBORHOODS
    Falgas-Ravry, Victor
    Marchant, Edward
    Pikhurko, Oleg
    Vaughan, Emil R.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (03) : 1504 - 1539
  • [28] An exact Turan result for tripartite 3-graphs
    Sanitt, Adam
    Talbot, John
    ELECTRONIC JOURNAL OF COMBINATORICS, 2015, 22 (04):
  • [29] A Stability Theorem for Matchings in Tripartite 3-Graphs
    Haxell, Penny
    Narins, Lothar
    COMBINATORICS PROBABILITY & COMPUTING, 2018, 27 (05): : 774 - 793
  • [30] On the Erdös–Hajnal Problem for 3-Graphs
    Cherkashin D.D.
    Journal of Mathematical Sciences, 2021, 255 (1) : 103 - 108