APPROXIMATING THE MINIMUM MAXIMAL INDEPENDENCE NUMBER

被引:77
|
作者
HALLDORSSON, MM
机构
[1] School of Information Science, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa
关键词
COMBINATORIAL PROBLEMS; APPROXIMATION ALGORITHMS;
D O I
10.1016/0020-0190(93)90022-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the problem of approximating the size of a minimum non-extendible independent set of a graph, also known as the minimum dominating independence number. We strengthen a result of Irving to show that there is no constant epsilon > 0 for which this problem can be approximated within a factor of n1-epsilon in polynomial time, unless P = NP. This is the strongest lower bound we are aware of for polynomial-time approximation of an unweighted NP-complete graph problem.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [21] Minimum number of k-cliques in graphs with bounded independence number
    Pikhurko, Oleg, 1600, Cambridge University Press (22):
  • [22] Minimum Number of k-Cliques in Graphs with Bounded Independence Number
    Pikhurko, Oleg
    Vaughan, Emil R.
    COMBINATORICS PROBABILITY & COMPUTING, 2013, 22 (06): : 910 - 934
  • [23] On the minimum number of k-cliques in graphs with restricted independence number
    Nikiforov, V
    COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (04): : 361 - 366
  • [24] Problem section -: The minimum independence number of a Hasse diagram
    Matousek, J
    Prívetivy, A
    COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (03): : 473 - 475
  • [25] Semi-regular graphs of minimum independence number
    Nelson, P
    Radcliffe, A
    DISCRETE MATHEMATICS, 2004, 275 (1-3) : 237 - 263
  • [26] The minimum spectral radius of graphs with a given independence number
    Xu, Mimi
    Hong, Yuan
    Shu, Jinlong
    Zhai, Mingqing
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (5-7) : 937 - 945
  • [27] Graphs with the minimum spectral radius for given independence number
    Hu, Yarong
    Huang, Qiongxiang
    Lou, Zhenzhen
    DISCRETE MATHEMATICS, 2025, 348 (02)
  • [28] STEINER TRIPLE-SYSTEMS WITH MINIMUM INDEPENDENCE NUMBER
    PHELPS, KT
    RODL, V
    ARS COMBINATORIA, 1986, 21 : 167 - 172
  • [29] Approximating the minimum number of maximum power users in ad hoc networks
    Lloyd, Errol L.
    Liu, Rui
    Ravi, S. S.
    MOBILE NETWORKS & APPLICATIONS, 2006, 11 (02): : 129 - 142
  • [30] Approximating the minimum number of maximum power users in ad hoc networks
    Lloyd, EL
    Liu, R
    Ravi, SS
    AD-HOC, MOBILE, AND WIRELESS NETWORKS, PROCEEDINGS, 2004, 3158 : 1 - 13