APPROXIMATION BY LOCAL PARABOLIC SPLINES OF FUNCTIONS BY THEIR VALUES ON AVERAGE

被引:0
|
作者
Shevaldina, E. V.
机构
来源
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:169 / 189
页数:21
相关论文
共 50 条
  • [21] LOCAL APPROXIMATION ORDER OF BOX SPLINES
    贾荣庆
    ScienceinChina,SerA., 1988, Ser.A.1988 (03) : 274 - 285
  • [22] Orders of Approximation by Local Exponential Splines
    Volkov, Yu S.
    Pytkeev, E. G.
    Shevaldin, V. T.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 284 : S175 - S184
  • [23] On Error Estimates of Local Approximation by Splines
    Yu. S. Volkov
    V. V. Bogdanov
    Siberian Mathematical Journal, 2020, 61 : 795 - 802
  • [24] Local approximation by splines with displacement of nodes
    Shevaldin V.T.
    Strelkova E.V.
    Volkov Y.S.
    Siberian Advances in Mathematics, 2013, 23 (1) : 69 - 75
  • [25] Reconstruction of splines from local average samples
    Perez-Villalon, G.
    Portal, A.
    APPLIED MATHEMATICS LETTERS, 2012, 25 (10) : 1315 - 1319
  • [26] INITIAL VALUES FOR PARABOLIC FUNCTIONS
    BEAR, HS
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) : 425 - 441
  • [27] On average values of arithmetic functions
    Fogels, E
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1941, 37 : 358 - 372
  • [28] Approximation of Mathieu Functions by Parabolic Cylinder Functions
    Zlobina, E. A.
    MATHEMATICAL NOTES, 2023, 114 (3-4) : 303 - 307
  • [29] Approximation of Mathieu Functions by Parabolic Cylinder Functions
    E. A. Zlobina
    Mathematical Notes, 2023, 114 : 303 - 307
  • [30] AVERAGE VALUES AND LINEAR FUNCTIONS
    DOBBS, DE
    COLLEGE MATHEMATICS JOURNAL, 1985, 16 (02): : 132 - 135