SOLITONS WITH NON-VANISHING HOPF INDEX

被引:64
|
作者
NICOLE, DA
机构
关键词
D O I
10.1088/0305-4616/4/9/008
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
引用
收藏
页码:1363 / 1369
页数:7
相关论文
共 50 条
  • [21] Finite groups and non-vanishing elements
    Feng Zhou
    Heguo Liu
    Fang Zhou
    Archiv der Mathematik, 2016, 107 : 121 - 125
  • [22] On the commutant of asymptotically non-vanishing contractions
    Geher, Gyoergy Pal
    Kerchy, Laszlo
    PERIODICA MATHEMATICA HUNGARICA, 2011, 63 (02) : 191 - 203
  • [23] Non-vanishing Fourier coefficients of Δk
    Tian, Peng
    Qin, Hourong
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 : 507 - 515
  • [24] Teleparallel gravity with non-vanishing curvature
    Wanas, M. I.
    Ammar, Samah A.
    Refaey, Shymaa A.
    CANADIAN JOURNAL OF PHYSICS, 2018, 96 (12) : 1373 - 1383
  • [25] On the non-vanishing of Jacobi Poincaré series
    Karam Deo Shankhadhar
    The Ramanujan Journal, 2017, 43 : 1 - 14
  • [26] Non-vanishing of Miyawaki type lifts
    Kim, Henry H.
    Yamauchi, Takuya
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2019, 89 (02): : 117 - 134
  • [27] A note on the effective non-vanishing conjecture
    Xie, Qihong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (01) : 61 - 63
  • [28] Non-vanishing higher derived limits
    Velickovic, Boban
    Vignati, Alessandro
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2024, 26 (07)
  • [29] THE NON-VANISHING OF THE DEVIATIONS OF A LOCAL RING
    HALPERIN, S
    COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (04) : 646 - 653
  • [30] Non-vanishing of Miyawaki type lifts
    Henry H. Kim
    Takuya Yamauchi
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2019, 89 : 117 - 134