REFINED ERROR ESTIMATES FOR THE RICCATI EQUATION WITH APPLICATIONS TO THE ANGULAR TEUKOLSKY EQUATION

被引:3
|
作者
Finster, Felix [1 ]
Smoller, Joel [2 ]
机构
[1] Univ Regensburg, Fak Math, D-93040 Regensburg, Germany
[2] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Error estimates; Riccati equation; Sturm-Liouville equations; angular Teukolsky equation;
D O I
10.4310/MAA.2015.v22.n1.a3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive refined rigorous error estimates for approximate solutions of Sturm-Liouville and Riccati equations with real or complex potentials. The approximate solutions include WKB approximations, Airy and parabolic cylinder functions, and certain Bessel functions. Our estimates are applied to solutions of the angular Teukolsky equation with a complex aspherical parameter in a rotating black hole Kerr geometry.
引用
收藏
页码:67 / 100
页数:34
相关论文
共 50 条