DYNAMIC EXPONENTS FOR ONE-DIMENSIONAL RANDOM RANDOM DIRECTED WALKS

被引:27
|
作者
ASLANGUL, C
BARTHELEMY, M
POTTIER, N
STJAMES, D
机构
[1] UNIV PARIS 06,F-75252 PARIS 05,FRANCE
[2] COLL FRANCE,F-75231 PARIS 05,FRANCE
关键词
Brownian motion; disordered media; random walks;
D O I
10.1007/BF01015561
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamical exponents of the coordinate and of the mean square displacement are explicitly calculated in the case of a directed random walk on a one-dimensional random lattice. Moreover, it is shown that, in the dynamical phase where the coordinate increases slower than t, the latter is not a self-averaging quantity. © 1990 Plenum Publishing Corporation.
引用
下载
收藏
页码:11 / 21
页数:11
相关论文
共 50 条
  • [41] Computer Simulations for Some One-Dimensional Models of Random Walks in Fluctuating Random Environment
    C. Boldrighini
    G. Cosimi
    S. Frigio
    A. Pellegrinotti
    Journal of Statistical Physics, 2005, 121 : 361 - 372
  • [42] Computer simulations for some one-dimensional models of random walks in fluctuating random environment
    Boldrighini, C
    Cosimi, G
    Frigio, S
    Pellegrinotti, A
    JOURNAL OF STATISTICAL PHYSICS, 2005, 121 (3-4) : 361 - 372
  • [43] A log-scale limit theorem for one-dimensional random walks in random environments
    Roitershtein, A
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2005, 10 : 244 - 253
  • [44] ONE-DIMENSIONAL RANDOM WALKS WITH SELF-BLOCKING IMMIGRATION
    Birkner, Matthias
    Sun, Rongfeng
    ANNALS OF APPLIED PROBABILITY, 2017, 27 (01): : 109 - 139
  • [45] COMBINATORIAL FORMULAS FOR ONE-DIMENSIONAL GENERALIZED RANDOM-WALKS
    LEATH, PL
    DUXBURY, PM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (09): : 1435 - 1447
  • [46] Log-periodic modulation in one-dimensional random walks
    Padilla, L.
    Martin, H. O.
    Iguain, J. L.
    EPL, 2009, 85 (02)
  • [47] ONE-DIMENSIONAL RANDOM-WALKS ON A LATTICE WITH ENERGETIC DISORDER
    LEVITSKY, IA
    PHYSICAL REVIEW B, 1994, 49 (22) : 15594 - 15599
  • [48] Full-record statistics of one-dimensional random walks
    Regnier, Leo
    Dolgushev, Maxim
    Benichou, Olivier
    PHYSICAL REVIEW E, 2024, 109 (06)
  • [49] Finite-sized one-dimensional lazy random walks
    M. Maneesh Kumar
    K. Manikandan
    R. Sankaranarayanan
    The European Physical Journal Plus, 139 (11)
  • [50] Mean cover time of one-dimensional persistent random walks
    Chupeau, Marie
    Benichou, Olivier
    Voituriez, Raphael
    PHYSICAL REVIEW E, 2014, 89 (06):