PARALLEL O(LOG N) TIME EDGE-COLOURING OF TREES AND HALIN GRAPHS

被引:7
|
作者
GIBBONS, AM
ISRAELI, A
RYTTER, W
机构
[1] HARVARD UNIV,AIKEN COMPUTAT LAB,CAMBRIDGE,MA 02138
[2] UNIV WARSAW,INST INFORMAT,PL-00901 WARSAW,POLAND
关键词
* This author was partially supported by a Weizmann Fel-lowship and by the National Science Foundation under Grant No. DCR-86-0636. l l Also with the Department of Computer Science; University of Warwick; Coventry; United Kingdom;
D O I
10.1016/0020-0190(88)90080-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
13
引用
收藏
页码:43 / 51
页数:9
相关论文
共 50 条
  • [41] Shortest Paths in Planar Graphs with Real Lengths in O(n log2 n/log log n) Time
    Mozes, Shay
    Wulff-Nilsen, Christian
    ALGORITHMS-ESA 2010, PT II, 2010, 6347 : 206 - +
  • [42] PARALLEL TIME O(LOG N) RECOGNITION OF UNAMBIGUOUS CFLS
    RYTTER, W
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 199 : 380 - 389
  • [43] PERFECT MATCHINGS IN O(n log n) TIME IN REGULAR BIPARTITE GRAPHS
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    SIAM JOURNAL ON COMPUTING, 2013, 42 (03) : 1392 - 1404
  • [44] RECOGNIZING BINARY HAMMING GRAPHS IN O(N(2) LOG N) TIME
    AURENHAMMER, F
    HAGAUER, J
    MATHEMATICAL SYSTEMS THEORY, 1995, 28 (05): : 387 - 395
  • [45] Perfect Matchings in O(n log n) Time in Regular Bipartite Graphs
    Goel, Ashish
    Kapralov, Michael
    Khanna, Sanjeev
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 39 - 46
  • [46] Min-Cuts and Shortest Cycles in Planar Graphs in O(n log log n) Time
    Lacki, Jakub
    Sankowski, Piotr
    ALGORITHMS - ESA 2011, 2011, 6942 : 155 - 166
  • [47] AN OPTIMAL O(LOG LOG-N) TIME PARALLEL STRING MATCHING ALGORITHM
    BRESLAUER, D
    GALIL, Z
    SIAM JOURNAL ON COMPUTING, 1990, 19 (06) : 1051 - 1058
  • [48] Computing the quartet distance between evolutionary trees in time O(n log n)
    Brodal, GS
    Fagerberg, R
    Pedersen, CNS
    ALGORITHMICA, 2004, 38 (02) : 377 - 395
  • [49] AN O (n log n)-TIME ALGORITHM FOR THE k-CENTER PROBLEM IN TREES
    Wang, Haitao
    Zhang, Jingru
    SIAM JOURNAL ON COMPUTING, 2021, 50 (02) : 602 - 635
  • [50] Computing the Quartet Distance between Evolutionary Trees in Time O(n log n)
    Gerth Stølting Brodal
    Rolf Fagerberg
    Christian N.S. Pedersen
    Algorithmica , 2004, 38 : 377 - 395