NEW RESTRICTED FLOWS OF THE KDV HIERARCHY AND THEIR BI-HAMILTONIAN STRUCTURE

被引:11
|
作者
RAUCHWOJCIECHOWSKI, S
机构
[1] Department of Mathematics, Linköping University
关键词
D O I
10.1016/0375-9601(91)90770-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find here new integrable Newton equations which follow from the KdV hierarchy restricted to invariant finite dimensional manifolds called restricted flows. By studying two equivalent algebraic formulations of the restricted KdV vector-field we obtain a bi-Hamiltonian formulation for a natural Hamiltonian system with indefinite kinetic energy. The potential of this Hamiltonian belongs to a larger family of parabolic type potentials which also admit bi-Hamiltonian formulation and which follow from restricted flows of the coupled KdV hierarchies.
引用
收藏
页码:241 / 246
页数:6
相关论文
共 50 条
  • [31] Bi-Hamiltonian aspects of a matrix Harry Dym hierarchy
    Fontanelli, Laura
    Lorenzoni, Paolo
    Pedroni, Marco
    Zubelli, Jorge P.
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (09)
  • [32] CONSTRAINED FLOWS OF INTEGRABLE PDES AND BI-HAMILTONIAN STRUCTURE OF THE GARNIER SYSTEM
    ANTONOWICZ, M
    RAUCHWOJCIECHOWSKI, S
    PHYSICS LETTERS A, 1990, 147 (8-9) : 455 - 462
  • [33] Bi-Hamiltonian Structure of Multi-Component Yajima-Oikawa Hierarchy
    Li, Hongmin
    Li, Yuqi
    Chen, Yong
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2015, 70 (11): : 929 - 934
  • [34] Modified constrained KP hierarchy and bi-Hamiltonian structures
    Hongmin Li
    Analysis and Mathematical Physics, 2021, 11
  • [35] Modified constrained KP hierarchy and bi-Hamiltonian structures
    Li, Hongmin
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (01)
  • [36] Bi-Hamiltonian structure and liouville integrablity for a Gerdjikov-Ivanov equation hierarchy
    Fan, EG
    CHINESE PHYSICS LETTERS, 2001, 18 (01): : 1 - 3
  • [37] A generalized AKNS hierarchy and its bi-Hamiltonian structures
    Xia, TC
    You, FC
    Chen, DY
    CHAOS SOLITONS & FRACTALS, 2005, 23 (05) : 1911 - 1919
  • [38] New lax integrable hierarchy of evolution equations and its infinite-dimensional BI-Hamiltonian structure
    Yan, Zhen-Ya
    Zhang, Hong-Qing
    Wuli Xuebao/Acta Physica Sinica, 2001, 50 (07): : 1235 - 1236
  • [39] New Lax integrable hierarchy of evolution equations and its infinite-dimensional bi-Hamiltonian structure
    Yan, ZY
    Zhang, HQ
    ACTA PHYSICA SINICA, 2001, 50 (07) : 1232 - 1236
  • [40] The bi-Hamiltonian structure of the Lagrange top
    Medan, C
    PHYSICS LETTERS A, 1996, 215 (3-4) : 176 - 180