MAXIMAL TRIANGLE-FREE GRAPHS WITH RESTRICTIONS ON THE DEGREES

被引:0
|
作者
FUREDI, Z [1 ]
SERESS, A [1 ]
机构
[1] OHIO STATE UNIV,COLUMBUS,OH 43210
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the problem that at least how many edges must a maximal triangle-free graph on n vertices have if the maximal valency is less than or equal to D. Denote this minimum value by F(n, D). For large enough n, we determine the exact value of F(n, D) if D greater than or equal to (n - 2)/2 and we prove that lim F(n, cn)/n = K(c) exists for all 0 < c with the possible exception of a sequence C-k -->, 0. The determination of K(c) is a finite problem on all intervals [gamma, infinity). For D = cn(8), 1/2 < epsilon < 1, we give upper and lower bounds for F(n, D) differing only in a constant factor. (Clearly, D < (n - 1)(1/2) is impossible in a maximal triangle-free graph.) (C) 1994 John Wiley and Sons, Inc.
引用
收藏
页码:11 / 24
页数:14
相关论文
共 50 条
  • [21] Triangle-free polyconvex graphs
    Isaksen, DC
    Robinson, B
    [J]. ARS COMBINATORIA, 2002, 64 : 259 - 263
  • [22] CYCLES IN TRIANGLE-FREE GRAPHS
    Li, Xiaojuan
    Wei, Bing
    Zhu, Yongjin
    [J]. DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2011, 3 (03) : 343 - 356
  • [23] The diagnosability of triangle-free graphs
    Lin, Cheng-Kuan
    Teng, Yuan-Hsiang
    [J]. THEORETICAL COMPUTER SCIENCE, 2014, 530 : 58 - 65
  • [24] TOUGHNESS AND TRIANGLE-FREE GRAPHS
    BAUER, D
    VANDENHEUVEL, J
    SCHMEICHEL, E
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1995, 65 (02) : 208 - 221
  • [25] Scott's Induced Subdivision Conjecture for Maximal Triangle-Free Graphs
    Bousquet, Nicolas
    Thomasse, Stephan
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2012, 21 (04): : 512 - 514
  • [26] THE SPECTRUM OF TRIANGLE-FREE GRAPHS
    Balogh, Jozsef
    Clemen, Felix Christian
    Lidick, Bernard
    Norin, Sergey
    Volec, Jan
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1173 - 1179
  • [27] MINIMUM TRIANGLE-FREE GRAPHS
    RADZISZOWSKI, SP
    KREHER, DL
    [J]. ARS COMBINATORIA, 1991, 31 : 65 - 92
  • [28] TRIANGLE-FREE REGULAR GRAPHS
    SIDORENKO, AF
    [J]. DISCRETE MATHEMATICS, 1991, 91 (02) : 215 - 217
  • [29] ON SMALL TRIANGLE-FREE GRAPHS
    HANSON, D
    MACGILLIVRAY, G
    [J]. ARS COMBINATORIA, 1993, 35 : 257 - 263
  • [30] Pentagons in triangle-free graphs
    Lidicky, Bernard
    Pfender, Florian
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 2018, 74 : 85 - 89