METHOD OF STEEPEST DESCENT FOR PATH-INTEGRALS

被引:2
|
作者
KOSHKAROV, AL [1 ]
机构
[1] STATE UNIV PETROZAVODSK, PETROZAVODSK, RUSSIA
关键词
D O I
10.1007/BF01040395
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
To estimate a Feynman path integral for a nonrelativistic particle with one degree of freedom in an arbitrary potential V(x), it is proposed to use a functional method of steepest descent, the analog of the method for finite-dimensional integrals, without going over to the Euclidean form of the theory. The concepts of functional Cauchy-Riemann conditions and Cauchy theorem in a complex function space are introduced and used essentially. After the choice in this space of a ''contour of steepest descent,'' the original Feynman integral is reduced to a functional integral of a decreasing exponential. In principle, the obtained result can serve as a basis for constructing the measure of Feynman path integrals.
引用
收藏
页码:153 / 157
页数:5
相关论文
共 50 条
  • [31] ORDINARY SUPERCONDUCTIVITY AND PATH-INTEGRALS
    TAGLIACOZZO, A
    VENTRIGLIA, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1989, 11 (1-2): : 141 - 156
  • [32] ON PATH-INTEGRALS IN SPHERICAL COORDINATES
    DURU, IH
    UNAL, N
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (16): : 3389 - 3392
  • [33] LIKELIHOOD AND COST AS PATH-INTEGRALS
    WHITTLE, P
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1991, 53 (03): : 505 - 538
  • [34] ON EXACT EVALUATION OF PATH-INTEGRALS
    NIEMI, AJ
    TIRKKONEN, O
    ANNALS OF PHYSICS, 1994, 235 (02) : 318 - 349
  • [35] METHOD OF STEEPEST DESCENT
    CHAPMAN, PB
    CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (01): : 133 - &
  • [37] Efficient evaluation of edge diffraction integrals using the numerical method of steepest descent
    Asheim, Andreas
    Svensson, U. Peter
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2010, 128 (04): : 1590 - 1597
  • [38] EXACT PATH-INTEGRALS BY EQUIVARIANT LOCALIZATION
    DYKSTRA, HM
    LYKKEN, JD
    RAITEN, EJ
    PHYSICS LETTERS B, 1993, 302 (2-3) : 223 - 229
  • [39] CHEBYSHEV POLYNOMIALS AND QUADRATIC PATH-INTEGRALS
    NASH, PL
    JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (12) : 2963 - 2963
  • [40] ON EVALUATING TOPOLOGICALLY CONSTRAINED PATH-INTEGRALS
    BERNIDO, CC
    CARPIOBERNIDO, MV
    INOMATA, A
    PHYSICS LETTERS A, 1989, 136 (06) : 259 - 263